Time-Dependent Toxicity of Tire Particles on Soil Nematodes
Tire-wear particles (TWPs) are being released into the environment by wearing down during car driving, and are considered an important microplastic pollution source. The chemical additive leaching from these polymer-based materials and its potential effects are likely temporally dynamic, since amoun...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2021-09-01
|
Series: | Frontiers in Environmental Science |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fenvs.2021.744668/full |
id |
doaj-0ef1df3f07c7416e9ecddd0ab7ff3ca9 |
---|---|
record_format |
Article |
spelling |
doaj-0ef1df3f07c7416e9ecddd0ab7ff3ca92021-09-20T04:25:23ZengFrontiers Media S.A.Frontiers in Environmental Science2296-665X2021-09-01910.3389/fenvs.2021.744668744668Time-Dependent Toxicity of Tire Particles on Soil NematodesShin Woong Kim0Shin Woong Kim1Eva F. Leifheit2Eva F. Leifheit3Stefanie Maaß4Stefanie Maaß5Matthias C. Rillig6Matthias C. Rillig7Institute of Biology, Freie Universität Berlin, Berlin, GermanyBerlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, GermanyInstitute of Biology, Freie Universität Berlin, Berlin, GermanyBerlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, GermanyBerlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, GermanyInstitute of Biochemistry and Biology, Universität Potsdam, Potsdam, GermanyInstitute of Biology, Freie Universität Berlin, Berlin, GermanyBerlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, GermanyTire-wear particles (TWPs) are being released into the environment by wearing down during car driving, and are considered an important microplastic pollution source. The chemical additive leaching from these polymer-based materials and its potential effects are likely temporally dynamic, since amounts of potentially toxic compounds can gradually increase with contact time of plastic particles with surrounding media. In the present study, we conducted soil toxicity tests using the soil nematode Caenorhabditis elegans with different soil pre-incubation (30 and 75 days) and exposure (short-term exposure, 2 days; lifetime exposure, 10 days) times. Soil pre-incubation increased toxicity of TWPs, and the effective concentrations after the pre-incubation were much lower than environmentally relevant concentrations. The lifetime of C. elegans was reduced faster in the TWP treatment groups, and the effective concentration for lifetime exposure tests were 100- to 1,000-fold lower than those of short-term exposure tests. Water-extractable metal concentrations (Cr, Cu, Ni, Pb, and Zn) in the TWP-soils showed no correlation with nominal TWP concentrations or pre-incubation times, and the incorporated metals in the TWPs may be not the main reason of toxicity in this study. Our results show that toxic effects of TWPs can be time-dependent, both in terms of the microplastic particles themselves and their interactions in the soil matrix, but also because of susceptibility of target organisms depending on developmental stage. It is vital that future works consider these aspects, since otherwise effects of microplastics and TWPs could be underestimated.https://www.frontiersin.org/articles/10.3389/fenvs.2021.744668/fullCaenorhabditis elegansexposure timelifetimemicroplasticssoil incubation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Shin Woong Kim Shin Woong Kim Eva F. Leifheit Eva F. Leifheit Stefanie Maaß Stefanie Maaß Matthias C. Rillig Matthias C. Rillig |
spellingShingle |
Shin Woong Kim Shin Woong Kim Eva F. Leifheit Eva F. Leifheit Stefanie Maaß Stefanie Maaß Matthias C. Rillig Matthias C. Rillig Time-Dependent Toxicity of Tire Particles on Soil Nematodes Frontiers in Environmental Science Caenorhabditis elegans exposure time lifetime microplastics soil incubation |
author_facet |
Shin Woong Kim Shin Woong Kim Eva F. Leifheit Eva F. Leifheit Stefanie Maaß Stefanie Maaß Matthias C. Rillig Matthias C. Rillig |
author_sort |
Shin Woong Kim |
title |
Time-Dependent Toxicity of Tire Particles on Soil Nematodes |
title_short |
Time-Dependent Toxicity of Tire Particles on Soil Nematodes |
title_full |
Time-Dependent Toxicity of Tire Particles on Soil Nematodes |
title_fullStr |
Time-Dependent Toxicity of Tire Particles on Soil Nematodes |
title_full_unstemmed |
Time-Dependent Toxicity of Tire Particles on Soil Nematodes |
title_sort |
time-dependent toxicity of tire particles on soil nematodes |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Environmental Science |
issn |
2296-665X |
publishDate |
2021-09-01 |
description |
Tire-wear particles (TWPs) are being released into the environment by wearing down during car driving, and are considered an important microplastic pollution source. The chemical additive leaching from these polymer-based materials and its potential effects are likely temporally dynamic, since amounts of potentially toxic compounds can gradually increase with contact time of plastic particles with surrounding media. In the present study, we conducted soil toxicity tests using the soil nematode Caenorhabditis elegans with different soil pre-incubation (30 and 75 days) and exposure (short-term exposure, 2 days; lifetime exposure, 10 days) times. Soil pre-incubation increased toxicity of TWPs, and the effective concentrations after the pre-incubation were much lower than environmentally relevant concentrations. The lifetime of C. elegans was reduced faster in the TWP treatment groups, and the effective concentration for lifetime exposure tests were 100- to 1,000-fold lower than those of short-term exposure tests. Water-extractable metal concentrations (Cr, Cu, Ni, Pb, and Zn) in the TWP-soils showed no correlation with nominal TWP concentrations or pre-incubation times, and the incorporated metals in the TWPs may be not the main reason of toxicity in this study. Our results show that toxic effects of TWPs can be time-dependent, both in terms of the microplastic particles themselves and their interactions in the soil matrix, but also because of susceptibility of target organisms depending on developmental stage. It is vital that future works consider these aspects, since otherwise effects of microplastics and TWPs could be underestimated. |
topic |
Caenorhabditis elegans exposure time lifetime microplastics soil incubation |
url |
https://www.frontiersin.org/articles/10.3389/fenvs.2021.744668/full |
work_keys_str_mv |
AT shinwoongkim timedependenttoxicityoftireparticlesonsoilnematodes AT shinwoongkim timedependenttoxicityoftireparticlesonsoilnematodes AT evafleifheit timedependenttoxicityoftireparticlesonsoilnematodes AT evafleifheit timedependenttoxicityoftireparticlesonsoilnematodes AT stefaniemaaß timedependenttoxicityoftireparticlesonsoilnematodes AT stefaniemaaß timedependenttoxicityoftireparticlesonsoilnematodes AT matthiascrillig timedependenttoxicityoftireparticlesonsoilnematodes AT matthiascrillig timedependenttoxicityoftireparticlesonsoilnematodes |
_version_ |
1717375011639001088 |