Extensive NEUROG3 occupancy in the human pancreatic endocrine gene regulatory network

Objective: Mice lacking the bHLH transcription factor (TF) Neurog3 do not form pancreatic islet cells, including insulin-secreting beta cells, the absence of which leads to diabetes. In humans, homozygous mutations of NEUROG3 manifest with neonatal or childhood diabetes. Despite this critical role i...

Full description

Bibliographic Details
Main Authors: Valérie Schreiber, Reuben Mercier, Sara Jiménez, Tao Ye, Emmanuel García-Sánchez, Annabelle Klein, Aline Meunier, Sabitri Ghimire, Catherine Birck, Bernard Jost, Kristian Honnens de Lichtenberg, Christian Honoré, Palle Serup, Gérard Gradwohl
Format: Article
Language:English
Published: Elsevier 2021-11-01
Series:Molecular Metabolism
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2212877821001605
id doaj-0eee5b4bdcfb4b04ae1c515cc6791a74
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Valérie Schreiber
Reuben Mercier
Sara Jiménez
Tao Ye
Emmanuel García-Sánchez
Annabelle Klein
Aline Meunier
Sabitri Ghimire
Catherine Birck
Bernard Jost
Kristian Honnens de Lichtenberg
Christian Honoré
Palle Serup
Gérard Gradwohl
spellingShingle Valérie Schreiber
Reuben Mercier
Sara Jiménez
Tao Ye
Emmanuel García-Sánchez
Annabelle Klein
Aline Meunier
Sabitri Ghimire
Catherine Birck
Bernard Jost
Kristian Honnens de Lichtenberg
Christian Honoré
Palle Serup
Gérard Gradwohl
Extensive NEUROG3 occupancy in the human pancreatic endocrine gene regulatory network
Molecular Metabolism
NEUROG3
iPSC
Islet progenitors
CUT&RUN
T2DM
SNPs
author_facet Valérie Schreiber
Reuben Mercier
Sara Jiménez
Tao Ye
Emmanuel García-Sánchez
Annabelle Klein
Aline Meunier
Sabitri Ghimire
Catherine Birck
Bernard Jost
Kristian Honnens de Lichtenberg
Christian Honoré
Palle Serup
Gérard Gradwohl
author_sort Valérie Schreiber
title Extensive NEUROG3 occupancy in the human pancreatic endocrine gene regulatory network
title_short Extensive NEUROG3 occupancy in the human pancreatic endocrine gene regulatory network
title_full Extensive NEUROG3 occupancy in the human pancreatic endocrine gene regulatory network
title_fullStr Extensive NEUROG3 occupancy in the human pancreatic endocrine gene regulatory network
title_full_unstemmed Extensive NEUROG3 occupancy in the human pancreatic endocrine gene regulatory network
title_sort extensive neurog3 occupancy in the human pancreatic endocrine gene regulatory network
publisher Elsevier
series Molecular Metabolism
issn 2212-8778
publishDate 2021-11-01
description Objective: Mice lacking the bHLH transcription factor (TF) Neurog3 do not form pancreatic islet cells, including insulin-secreting beta cells, the absence of which leads to diabetes. In humans, homozygous mutations of NEUROG3 manifest with neonatal or childhood diabetes. Despite this critical role in islet cell development, the precise function of and downstream genetic programs regulated directly by NEUROG3 remain elusive. Therefore, we mapped genome-wide NEUROG3 occupancy in human induced pluripotent stem cell (hiPSC)–derived endocrine progenitors and determined NEUROG3 dependency of associated genes to uncover direct targets. Methods: We generated a novel hiPSC line (NEUROG3-HA-P2A-Venus) where NEUROG3 is HA-tagged and fused to a self-cleaving fluorescent VENUS reporter. We used the CUT&RUN technique to map NEUROG3 occupancy and epigenetic marks in pancreatic endocrine progenitors (PEP) that were differentiated from this hiPSC line. We integrated NEUROG3 occupancy data with chromatin status and gene expression in PEPs as well as their NEUROG3-dependence. In addition, we investigated whether NEUROG3 binds type 2 diabetes mellitus (T2DM)–associated variants at the PEP stage. Results: CUT&RUN revealed a total of 863 NEUROG3 binding sites assigned to 1263 unique genes. NEUROG3 occupancy was found at promoters as well as at distant cis-regulatory elements that frequently overlapped within PEP active enhancers. De novo motif analyses defined a NEUROG3 consensus binding motif and suggested potential co-regulation of NEUROG3 target genes by FOXA or RFX transcription factors. We found that 22% of the genes downregulated in NEUROG3−/− PEPs, and 10% of genes enriched in NEUROG3-Venus positive endocrine cells were bound by NEUROG3 and thus likely to be directly regulated. NEUROG3 binds to 138 transcription factor genes, some with important roles in islet cell development or function, such as NEUROD1, PAX4, NKX2-2, SOX4, MLXIPL, LMX1B, RFX3, and NEUROG3 itself, and many others with unknown islet function. Unexpectedly, we uncovered that NEUROG3 targets genes critical for insulin secretion in beta cells (e.g., GCK, ABCC8/KCNJ11, CACNA1A, CHGA, SCG2, SLC30A8, and PCSK1). Thus, analysis of NEUROG3 occupancy suggests that the transient expression of NEUROG3 not only promotes islet destiny in uncommitted pancreatic progenitors, but could also initiate endocrine programs essential for beta cell function. Lastly, we identified eight T2DM risk SNPs within NEUROG3-bound regions. Conclusion: Mapping NEUROG3 genome occupancy in PEPs uncovered unexpectedly broad, direct control of the endocrine genes, raising novel hypotheses on how this master regulator controls islet and beta cell differentiation.
topic NEUROG3
iPSC
Islet progenitors
CUT&RUN
T2DM
SNPs
url http://www.sciencedirect.com/science/article/pii/S2212877821001605
work_keys_str_mv AT valerieschreiber extensiveneurog3occupancyinthehumanpancreaticendocrinegeneregulatorynetwork
AT reubenmercier extensiveneurog3occupancyinthehumanpancreaticendocrinegeneregulatorynetwork
AT sarajimenez extensiveneurog3occupancyinthehumanpancreaticendocrinegeneregulatorynetwork
AT taoye extensiveneurog3occupancyinthehumanpancreaticendocrinegeneregulatorynetwork
AT emmanuelgarciasanchez extensiveneurog3occupancyinthehumanpancreaticendocrinegeneregulatorynetwork
AT annabelleklein extensiveneurog3occupancyinthehumanpancreaticendocrinegeneregulatorynetwork
AT alinemeunier extensiveneurog3occupancyinthehumanpancreaticendocrinegeneregulatorynetwork
AT sabitrighimire extensiveneurog3occupancyinthehumanpancreaticendocrinegeneregulatorynetwork
AT catherinebirck extensiveneurog3occupancyinthehumanpancreaticendocrinegeneregulatorynetwork
AT bernardjost extensiveneurog3occupancyinthehumanpancreaticendocrinegeneregulatorynetwork
AT kristianhonnensdelichtenberg extensiveneurog3occupancyinthehumanpancreaticendocrinegeneregulatorynetwork
AT christianhonore extensiveneurog3occupancyinthehumanpancreaticendocrinegeneregulatorynetwork
AT palleserup extensiveneurog3occupancyinthehumanpancreaticendocrinegeneregulatorynetwork
AT gerardgradwohl extensiveneurog3occupancyinthehumanpancreaticendocrinegeneregulatorynetwork
_version_ 1721196118385098752
spelling doaj-0eee5b4bdcfb4b04ae1c515cc6791a742021-08-26T04:33:54ZengElsevierMolecular Metabolism2212-87782021-11-0153101313Extensive NEUROG3 occupancy in the human pancreatic endocrine gene regulatory networkValérie Schreiber0Reuben Mercier1Sara Jiménez2Tao Ye3Emmanuel García-Sánchez4Annabelle Klein5Aline Meunier6Sabitri Ghimire7Catherine Birck8Bernard Jost9Kristian Honnens de Lichtenberg10Christian Honoré11Palle Serup12Gérard Gradwohl13Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, 1 rue Laurent Fries, 67404 Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR7104, 1 rue Laurent Fries, 67404 Illkirch, France; Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France; Corresponding author. 1 Rue Laurent Fries, 67404 Illkirch, France. Fax: +33 3 88 65 32 01.Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, 1 rue Laurent Fries, 67404 Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR7104, 1 rue Laurent Fries, 67404 Illkirch, France; Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, FranceInstitut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, 1 rue Laurent Fries, 67404 Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR7104, 1 rue Laurent Fries, 67404 Illkirch, France; Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, FranceInstitut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, 1 rue Laurent Fries, 67404 Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR7104, 1 rue Laurent Fries, 67404 Illkirch, France; Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, FranceInstitut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, 1 rue Laurent Fries, 67404 Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR7104, 1 rue Laurent Fries, 67404 Illkirch, France; Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, FranceInstitut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, 1 rue Laurent Fries, 67404 Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR7104, 1 rue Laurent Fries, 67404 Illkirch, France; Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, FranceInstitut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, 1 rue Laurent Fries, 67404 Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR7104, 1 rue Laurent Fries, 67404 Illkirch, France; Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, FranceInstitut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, 1 rue Laurent Fries, 67404 Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR7104, 1 rue Laurent Fries, 67404 Illkirch, France; Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, FranceInstitut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, 1 rue Laurent Fries, 67404 Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR7104, 1 rue Laurent Fries, 67404 Illkirch, France; Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, FranceInstitut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, 1 rue Laurent Fries, 67404 Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR7104, 1 rue Laurent Fries, 67404 Illkirch, France; Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, FranceNovo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, DenmarkDepartment of Stem Cell Biology, Novo Nordisk A/S, DK-2760 Måløv, DenmarkNovo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, DenmarkInstitut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, 1 rue Laurent Fries, 67404 Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR7104, 1 rue Laurent Fries, 67404 Illkirch, France; Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France; Corresponding author. 1 Rue Laurent Fries, 67404 Illkirch, France. Fax: +33 3 88 65 32 01.Objective: Mice lacking the bHLH transcription factor (TF) Neurog3 do not form pancreatic islet cells, including insulin-secreting beta cells, the absence of which leads to diabetes. In humans, homozygous mutations of NEUROG3 manifest with neonatal or childhood diabetes. Despite this critical role in islet cell development, the precise function of and downstream genetic programs regulated directly by NEUROG3 remain elusive. Therefore, we mapped genome-wide NEUROG3 occupancy in human induced pluripotent stem cell (hiPSC)–derived endocrine progenitors and determined NEUROG3 dependency of associated genes to uncover direct targets. Methods: We generated a novel hiPSC line (NEUROG3-HA-P2A-Venus) where NEUROG3 is HA-tagged and fused to a self-cleaving fluorescent VENUS reporter. We used the CUT&RUN technique to map NEUROG3 occupancy and epigenetic marks in pancreatic endocrine progenitors (PEP) that were differentiated from this hiPSC line. We integrated NEUROG3 occupancy data with chromatin status and gene expression in PEPs as well as their NEUROG3-dependence. In addition, we investigated whether NEUROG3 binds type 2 diabetes mellitus (T2DM)–associated variants at the PEP stage. Results: CUT&RUN revealed a total of 863 NEUROG3 binding sites assigned to 1263 unique genes. NEUROG3 occupancy was found at promoters as well as at distant cis-regulatory elements that frequently overlapped within PEP active enhancers. De novo motif analyses defined a NEUROG3 consensus binding motif and suggested potential co-regulation of NEUROG3 target genes by FOXA or RFX transcription factors. We found that 22% of the genes downregulated in NEUROG3−/− PEPs, and 10% of genes enriched in NEUROG3-Venus positive endocrine cells were bound by NEUROG3 and thus likely to be directly regulated. NEUROG3 binds to 138 transcription factor genes, some with important roles in islet cell development or function, such as NEUROD1, PAX4, NKX2-2, SOX4, MLXIPL, LMX1B, RFX3, and NEUROG3 itself, and many others with unknown islet function. Unexpectedly, we uncovered that NEUROG3 targets genes critical for insulin secretion in beta cells (e.g., GCK, ABCC8/KCNJ11, CACNA1A, CHGA, SCG2, SLC30A8, and PCSK1). Thus, analysis of NEUROG3 occupancy suggests that the transient expression of NEUROG3 not only promotes islet destiny in uncommitted pancreatic progenitors, but could also initiate endocrine programs essential for beta cell function. Lastly, we identified eight T2DM risk SNPs within NEUROG3-bound regions. Conclusion: Mapping NEUROG3 genome occupancy in PEPs uncovered unexpectedly broad, direct control of the endocrine genes, raising novel hypotheses on how this master regulator controls islet and beta cell differentiation.http://www.sciencedirect.com/science/article/pii/S2212877821001605NEUROG3iPSCIslet progenitorsCUT&RUNT2DMSNPs