Full-Order Disturbance-Observer-Based Control for Singular Hybrid System

The problem of the disturbance-observer-based control for singular hybrid system with two types of disturbances is addressed in this paper. Under the assumption that the system states are, unavailable, full-order observers (for both system states and the disturbance) and a nonlinear control scheme a...

Full description

Bibliographic Details
Main Authors: Xiuming Yao, Ze Dong, Dongfeng Wang
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2013/352198
Description
Summary:The problem of the disturbance-observer-based control for singular hybrid system with two types of disturbances is addressed in this paper. Under the assumption that the system states are, unavailable, full-order observers (for both system states and the disturbance) and a nonlinear control scheme are constructed, such that the composite system can be guaranteed to be stochastically admissible, and the two types of disturbances can be attenuated and rejected, simultaneously. Based on the Lyapunov stability theory, sufficient conditions for the existence of the desired full-order disturbance-observer-based controllers are established in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to show the effectiveness of the proposed approaches.
ISSN:1024-123X
1563-5147