Full-Order Disturbance-Observer-Based Control for Singular Hybrid System
The problem of the disturbance-observer-based control for singular hybrid system with two types of disturbances is addressed in this paper. Under the assumption that the system states are, unavailable, full-order observers (for both system states and the disturbance) and a nonlinear control scheme a...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2013-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2013/352198 |
Summary: | The problem of the disturbance-observer-based control for singular hybrid system with two types of disturbances is addressed in this paper. Under the assumption that the system states are, unavailable, full-order observers (for both system states and the disturbance) and a nonlinear control scheme are constructed, such that the composite system can be guaranteed to be stochastically admissible, and the two types of disturbances can be attenuated and rejected, simultaneously. Based on the Lyapunov stability theory, sufficient conditions for the existence of the desired full-order disturbance-observer-based controllers are established in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to show the effectiveness of the proposed approaches. |
---|---|
ISSN: | 1024-123X 1563-5147 |