Flexural Behavior of Slab-Rib Integrated Bridge Decks with GFRP Skin and Polyurethane Foam Core

This paper presents experimental and analytical studies on flexural behavior of slab-rib integrated Sandwich composite decks. The influences of layers of glass fiber-reinforced polymer (GFRP) facesheets, foam densities, and the existence of webs and cross beams are discussed herein. The test results...

Full description

Bibliographic Details
Main Authors: Jing Li, Jun Wang, Bishnu Prasad Yadav, Jiye Chen, Qiang Jin, Weiqing Liu
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2020/3597056
id doaj-0eb7dc1a29e4485da9d51b9664fbd1f7
record_format Article
spelling doaj-0eb7dc1a29e4485da9d51b9664fbd1f72020-12-14T09:46:35ZengHindawi LimitedAdvances in Materials Science and Engineering1687-84341687-84422020-01-01202010.1155/2020/35970563597056Flexural Behavior of Slab-Rib Integrated Bridge Decks with GFRP Skin and Polyurethane Foam CoreJing Li0Jun Wang1Bishnu Prasad Yadav2Jiye Chen3Qiang Jin4Weiqing Liu5College of Civil Engineering, Nanjing Tech University, Nanjing, ChinaCollege of Civil Engineering, Nanjing Tech University, Nanjing, ChinaCollege of Civil Engineering, Nanjing Tech University, Nanjing, ChinaSchool of Civil Engineering and Surveying, University of Portsmouth, Portsmouth, UKCollege of Civil and Hydraulic Engineering, Xinjiang Agricultural University, Urumqi, ChinaCollege of Civil Engineering, Nanjing Tech University, Nanjing, ChinaThis paper presents experimental and analytical studies on flexural behavior of slab-rib integrated Sandwich composite decks. The influences of layers of glass fiber-reinforced polymer (GFRP) facesheets, foam densities, and the existence of webs and cross beams are discussed herein. The test results showed that the existence of vertical webs remarkably improved the debonding of the facesheets from the foam core, thus increasing the ultimate load by 59% compared with the specimens without webs. However, the existence of horizontal webs has insignificant effect on the failure mode and ultimate load. Increasing the number of layers of GFRP facesheets from 2 to 4 and 6 results in 100% and 214% increments in ultimate loads, respectively, while the specimen with lower density of foam had a higher ultimate load than the specimen with higher density of foam due to deformation compatibility between GFRP skins and foam core with low density. The analysis software Abaqus Explicit was used to simulate the flexural behavior of test specimens, and the numerical results agreed well with the test data. The verified finite element model was extended to analyze the influences of the number of GFRP layers on the top of decks and the height of vertical webs. Based on equivalent method and compatibility of shear deformation, the flexural and shear rigidities were estimated. Then, analytical solution for displacement of the slab-rib integrated Sandwich composite decks subjected to four-point load was derived out. Comparison of analytical and experimental results shows that the displacements can be precisely predicted by the present theoretical model.http://dx.doi.org/10.1155/2020/3597056
collection DOAJ
language English
format Article
sources DOAJ
author Jing Li
Jun Wang
Bishnu Prasad Yadav
Jiye Chen
Qiang Jin
Weiqing Liu
spellingShingle Jing Li
Jun Wang
Bishnu Prasad Yadav
Jiye Chen
Qiang Jin
Weiqing Liu
Flexural Behavior of Slab-Rib Integrated Bridge Decks with GFRP Skin and Polyurethane Foam Core
Advances in Materials Science and Engineering
author_facet Jing Li
Jun Wang
Bishnu Prasad Yadav
Jiye Chen
Qiang Jin
Weiqing Liu
author_sort Jing Li
title Flexural Behavior of Slab-Rib Integrated Bridge Decks with GFRP Skin and Polyurethane Foam Core
title_short Flexural Behavior of Slab-Rib Integrated Bridge Decks with GFRP Skin and Polyurethane Foam Core
title_full Flexural Behavior of Slab-Rib Integrated Bridge Decks with GFRP Skin and Polyurethane Foam Core
title_fullStr Flexural Behavior of Slab-Rib Integrated Bridge Decks with GFRP Skin and Polyurethane Foam Core
title_full_unstemmed Flexural Behavior of Slab-Rib Integrated Bridge Decks with GFRP Skin and Polyurethane Foam Core
title_sort flexural behavior of slab-rib integrated bridge decks with gfrp skin and polyurethane foam core
publisher Hindawi Limited
series Advances in Materials Science and Engineering
issn 1687-8434
1687-8442
publishDate 2020-01-01
description This paper presents experimental and analytical studies on flexural behavior of slab-rib integrated Sandwich composite decks. The influences of layers of glass fiber-reinforced polymer (GFRP) facesheets, foam densities, and the existence of webs and cross beams are discussed herein. The test results showed that the existence of vertical webs remarkably improved the debonding of the facesheets from the foam core, thus increasing the ultimate load by 59% compared with the specimens without webs. However, the existence of horizontal webs has insignificant effect on the failure mode and ultimate load. Increasing the number of layers of GFRP facesheets from 2 to 4 and 6 results in 100% and 214% increments in ultimate loads, respectively, while the specimen with lower density of foam had a higher ultimate load than the specimen with higher density of foam due to deformation compatibility between GFRP skins and foam core with low density. The analysis software Abaqus Explicit was used to simulate the flexural behavior of test specimens, and the numerical results agreed well with the test data. The verified finite element model was extended to analyze the influences of the number of GFRP layers on the top of decks and the height of vertical webs. Based on equivalent method and compatibility of shear deformation, the flexural and shear rigidities were estimated. Then, analytical solution for displacement of the slab-rib integrated Sandwich composite decks subjected to four-point load was derived out. Comparison of analytical and experimental results shows that the displacements can be precisely predicted by the present theoretical model.
url http://dx.doi.org/10.1155/2020/3597056
work_keys_str_mv AT jingli flexuralbehaviorofslabribintegratedbridgedeckswithgfrpskinandpolyurethanefoamcore
AT junwang flexuralbehaviorofslabribintegratedbridgedeckswithgfrpskinandpolyurethanefoamcore
AT bishnuprasadyadav flexuralbehaviorofslabribintegratedbridgedeckswithgfrpskinandpolyurethanefoamcore
AT jiyechen flexuralbehaviorofslabribintegratedbridgedeckswithgfrpskinandpolyurethanefoamcore
AT qiangjin flexuralbehaviorofslabribintegratedbridgedeckswithgfrpskinandpolyurethanefoamcore
AT weiqingliu flexuralbehaviorofslabribintegratedbridgedeckswithgfrpskinandpolyurethanefoamcore
_version_ 1714998352507043840