On the LP-convergence for multidimensional arrays of random variables

For a d-dimensional array of random variables {Xn,n∈ℤ+d} such that {|Xn|p,n∈ℤ+d} is uniformly integrable for some 0<p<2, the Lp-convergence is established for the sums (1/|n|1/p) (∑j≺n(Xj−aj)), where aj=0 if 0<p<1, and aj=EXj if 1≤p<2.

Bibliographic Details
Main Author: Le Van Thanh
Format: Article
Language:English
Published: Hindawi Limited 2005-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/IJMMS.2005.1317
id doaj-0eb6013f01234bd3a626328968d9cee4
record_format Article
spelling doaj-0eb6013f01234bd3a626328968d9cee42020-11-24T23:50:07ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252005-01-01200581317132010.1155/IJMMS.2005.1317On the LP-convergence for multidimensional arrays of random variablesLe Van Thanh0Department of Mathematics, Vinh University, Nghe An 42118, VietnamFor a d-dimensional array of random variables {Xn,n∈ℤ+d} such that {|Xn|p,n∈ℤ+d} is uniformly integrable for some 0<p<2, the Lp-convergence is established for the sums (1/|n|1/p) (∑j≺n(Xj−aj)), where aj=0 if 0<p<1, and aj=EXj if 1≤p<2.http://dx.doi.org/10.1155/IJMMS.2005.1317
collection DOAJ
language English
format Article
sources DOAJ
author Le Van Thanh
spellingShingle Le Van Thanh
On the LP-convergence for multidimensional arrays of random variables
International Journal of Mathematics and Mathematical Sciences
author_facet Le Van Thanh
author_sort Le Van Thanh
title On the LP-convergence for multidimensional arrays of random variables
title_short On the LP-convergence for multidimensional arrays of random variables
title_full On the LP-convergence for multidimensional arrays of random variables
title_fullStr On the LP-convergence for multidimensional arrays of random variables
title_full_unstemmed On the LP-convergence for multidimensional arrays of random variables
title_sort on the lp-convergence for multidimensional arrays of random variables
publisher Hindawi Limited
series International Journal of Mathematics and Mathematical Sciences
issn 0161-1712
1687-0425
publishDate 2005-01-01
description For a d-dimensional array of random variables {Xn,n∈ℤ+d} such that {|Xn|p,n∈ℤ+d} is uniformly integrable for some 0<p<2, the Lp-convergence is established for the sums (1/|n|1/p) (∑j≺n(Xj−aj)), where aj=0 if 0<p<1, and aj=EXj if 1≤p<2.
url http://dx.doi.org/10.1155/IJMMS.2005.1317
work_keys_str_mv AT levanthanh onthelpconvergenceformultidimensionalarraysofrandomvariables
_version_ 1725479930197704704