Rejection Positivity Predicts Trial-to-Trial Reaction Times in an Auditory Selective Attention Task: A Computational Analysis of Inhibitory Control

A series of computer simulations using variants of a formal model of attention (Melara & Algom, 2003) probed the role of rejection positivity (RP), a slow-wave electroencephalographic (EEG) component, in the inhibitory control of distraction. Behavioral and EEG data were recorded as participant...

Full description

Bibliographic Details
Main Authors: Sufen eChen, Robert D. Melara
Format: Article
Language:English
Published: Frontiers Media S.A. 2014-08-01
Series:Frontiers in Human Neuroscience
Subjects:
Online Access:http://journal.frontiersin.org/Journal/10.3389/fnhum.2014.00585/full
Description
Summary:A series of computer simulations using variants of a formal model of attention (Melara & Algom, 2003) probed the role of rejection positivity (RP), a slow-wave electroencephalographic (EEG) component, in the inhibitory control of distraction. Behavioral and EEG data were recorded as participants performed auditory selective attention tasks. Simulations that modulated processes of distractor inhibition accounted well for reaction-time (RT) performance, whereas those that modulated target excitation did not. A model that incorporated RP from actual EEG recordings in estimating distractor inhibition was superior in predicting changes in RT as a function of distractor salience across conditions. A model that additionally incorporated momentary fluctuations in EEG as the source of trial-to-trial variation in performance precisely predicted individual RTs within each condition. The results lend support to the linking proposition that RP controls the speed of responding to targets through the inhibitory control of distractors.
ISSN:1662-5161