Summary: | Hallux valgus (HV) is a foot deformity most commonly found in female and elderly patients. Its symptoms include foot pain, impaired gait patterns, poor balance, and falls in older adults. Recently, various HV orthoses have been introduced in the market; however, they have many shortcomings, such as high costs, unclear therapeutic effects, and effects on push-off of the foot during walking. The present study employs 3D printing technology to develop an HV orthosis and uses motion analysis to investigate the effects of wearing it. This study recruited 12 individuals with HV, who were asked to first perform a static HV measurement without orthosis, followed by a dynamic HV measurement using a Vicon motion analysis system in three trials. The results indicated that wearing the 3D-printed orthosis significantly corrected the HV angle by approximately 11° during static standing and by approximately 9° during dynamic walking. However, no significant difference was observed during use of the orthosis in terms of the ground reaction force. The obtained results demonstrate that the 3D-printed HV orthosis is an effective device for correcting the HV angle during static standing and dynamic walking, especially during the push-off phase of gait.
|