Bayesian Recurrent Neural Network Models for Forecasting and Quantifying Uncertainty in Spatial-Temporal Data

Recurrent neural networks (RNNs) are nonlinear dynamical models commonly used in the machine learning and dynamical systems literature to represent complex dynamical or sequential relationships between variables. Recently, as deep learning models have become more common, RNNs have been used to forec...

Full description

Bibliographic Details
Main Authors: Patrick L. McDermott, Christopher K. Wikle
Format: Article
Language:English
Published: MDPI AG 2019-02-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/21/2/184