TRPV1 feed-forward sensitisation depends on COX2 upregulation in primary sensory neurons

Abstract Increased activity and excitability (sensitisation) of a series of molecules including the transient receptor potential ion channel, vanilloid subfamily, member 1 (TRPV1) in pain-sensing (nociceptive) primary sensory neurons are pivotal for developing pathological pain experiences in tissue...

Full description

Bibliographic Details
Main Authors: Tianci Li, Gaoge Wang, Vivian Chin Chin Hui, Daniel Saad, Joao de Sousa Valente, Paolo La Montanara, Istvan Nagy
Format: Article
Language:English
Published: Nature Publishing Group 2021-02-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-021-82829-6
Description
Summary:Abstract Increased activity and excitability (sensitisation) of a series of molecules including the transient receptor potential ion channel, vanilloid subfamily, member 1 (TRPV1) in pain-sensing (nociceptive) primary sensory neurons are pivotal for developing pathological pain experiences in tissue injuries. TRPV1 sensitisation is induced and maintained by two major mechanisms; post-translational and transcriptional changes in TRPV1 induced by inflammatory mediators produced and accumulated in injured tissues, and TRPV1 activation-induced feed-forward signalling. The latter mechanism includes synthesis of TRPV1 agonists within minutes, and upregulation of various receptors functionally linked to TRPV1 within a few hours, in nociceptive primary sensory neurons. Here, we report that a novel mechanism, which contributes to TRPV1 activation-induced TRPV1-sensitisation within ~ 30 min in at least ~ 30% of TRPV1-expressing cultured murine primary sensory neurons, is mediated through upregulation in cyclooxygenase 2 (COX2) expression and increased synthesis of a series of COX2 products. These findings highlight the importance of feed-forward signalling in sensitisation, and the value of inhibiting COX2 activity to control pain, in nociceptive primary sensory neurons in tissue injuries.
ISSN:2045-2322