Summary: | Human-induced changes in land use lead to major changes in plant community composition and structure which have strong effects on eco-hydrological processes and functions. We here tested the hypothesis that changes in traits of living plants have resulted in changes in structural attributes of the community that influenced eco-hydrological functions by altering eco-hydrological processes. This was done in the context of a subtropical secondary forest succession following land abandonment in Central Yunnan (Southwest China). During the succession, species with high specific leaf area (SLA), high leaf nitrogen concentration (LNC), high specific root length (SRL), and low leaf dry matter content (LDMC) were progressively replaced by species with the opposite characteristics. The obtained results of correlation analyses were as follows: (1) Correlations were significant between community-aggregated SLA, LNC, and the leaf area index (LAI). Significant correlations were detected between LAI, canopy interception and stemflow, and surface runoff and soil erosion. (2) Significant correlations were also found between community-aggregated SLA, LNC, LDMC, and accumulated litter biomass. High accumulated litter biomass strongly increases the maximum water-retaining capacity of litter. However, significant correlations were not found between the maximum water-retaining capacity of litter and surface runoff and soil erosion. (3) Correlations were significant between community-aggregated SLA, LNC, and fine root biomass. Fine root biomass was not significantly related to the maximum water-retaining capacity of the soil, but was significantly related to surface runoff and soil erosion. These results suggest that canopy characteristics play a more important role in control of runoff and soil erosion at the studied site. It follows that plant functional traits are closely linked with canopy characteristics, which should be used as a standard for selecting species in restoration and revegetation for water and soil conservation.
|