Fabrication of AZO TCO Films by RF-sputtering and Their Physical Properties

We report on the fabrication of Al-doped ZnO (AZO) transparent-conductive oxide (TCO) films on glass substrates by RF-sputtering, their physical properties, and the effect of thermal annealing on the AZO TCO films. The AZO films on glass substrates have a preferred orientation of the c-axis, irrespe...

Full description

Bibliographic Details
Main Authors: Jang T.S., Oh D.C.
Format: Article
Language:English
Published: EDP Sciences 2016-01-01
Series:MATEC Web of Conferences
Online Access:http://dx.doi.org/10.1051/matecconf/20167801106
Description
Summary:We report on the fabrication of Al-doped ZnO (AZO) transparent-conductive oxide (TCO) films on glass substrates by RF-sputtering, their physical properties, and the effect of thermal annealing on the AZO TCO films. The AZO films on glass substrates have a preferred orientation of the c-axis, irrespective of deposition conditions, which means that the AZO films have textured structures along the c-axis. The film thickness and surface roughness in the AZO films are proportional to plasma power and deposition time, while they are inverse-proportional to working gas ratio and working pressure. The AZO films have the optical transmittance over 80 % in the wavelength range of 400 – 1000 nm, irrespective of deposition conditions. The plasma power and the deposition time relatively give a large influence on the optical transmittance, compared to the working gas ratio and the working pressure. The AZO films deposited at room temperature have poor electrical properties, while the thermal annealing under Ar ambient significantly improves the electrical conductivity of the AZO films: an as-deposited sample has an electrical resistivity of 87 Wcm and an electron concentration of 1.3´1017 cm−3, while the annealed sample has an electrical resistivity of 3.7´10-2 Wcm and an electron concentration of 1.2´1020 cm−3.
ISSN:2261-236X