Modeling of Antenna for Deep Target Hydrocarbon Exploration

Nowadays control source electromagnetic method is used for offshore hydrocarbon exploration. Hydrocarbon detection in sea bed logging (SBL) is a very challenging task for deep target hydrocarbon reservoir. Response of electromagnetic (EM) field from marine environment is very low and it is very diff...

Full description

Bibliographic Details
Main Authors: Nadeem Nasir, Noorhana Yahya, Hasnah Mohd Zaid, Afza Shafie, Norhisham Hamid
Format: Article
Language:English
Published: Universitas Negeri Malang 2017-11-01
Series:Journal of Mechanical Engineering Science and Technology
Subjects:
Online Access:http://journal2.um.ac.id/index.php/jmest/article/view/1771
Description
Summary:Nowadays control source electromagnetic method is used for offshore hydrocarbon exploration. Hydrocarbon detection in sea bed logging (SBL) is a very challenging task for deep target hydrocarbon reservoir. Response of electromagnetic (EM) field from marine environment is very low and it is very difficult to predict deep target reservoir below 2km from the sea floor. This work premise deals with modeling of new antenna for deep water deep target hydrocarbon exploration. Conventional and new EM antennas at 0.125Hz frequency are used in modeling for the detection of deep target hydrocarbon  reservoir.  The  proposed  area  of  the  seabed model   (40km ´ 40km)   was   simulated   by using CST (computer simulation technology) EM studio based on Finite Integration Method (FIM). Electromagnetic field components were compared at 500m target depth and it was concluded that Ex and Hz components shows better resistivity contrast. Comparison of conventional and new antenna for different target  depths  was  done in  our  proposed  model.  From  the results, it was observed that conventional antenna at 0.125Hz shows 70% ,86% resistivity contrast at target depth of 1000m where   as   new   antenna   showed   329%, 355%   resistivity contrast at the same target depth for Ex and Hz field respectively.  It  was  also  investigated  that  at  frequency of0.125Hz, new antenna gave 46% better delineation of hydrocarbon at 4000m target depth. This is due to focusing of electromagnetic waves by using new antenna. New antenna design gave 125% more extra depth than straight antenna for deep target hydrocarbon detection. Numerical modeling for straight  and  new antenna  was also done to know general equation for electromagnetic field behavior with target depth. From this numerical model it was speculated that this new antenna can detect up to 4.5 km target depth. This new EM antenna may open new frontiers for oil and gas industry for the detection of deep target hydrocarbon reservoir (HC)
ISSN:2580-0817
2580-2402