A Novel SHLNN Based Robust Control and Tracking Method for Hypersonic Vehicle under Parameter Uncertainty

Hypersonic vehicle is a typical parameter uncertain system with significant characteristics of strong coupling, nonlinearity, and external disturbance. In this paper, a combined system modeling approach is proposed to approximate the actual vehicle system. The state feedback control strategy is adop...

Full description

Bibliographic Details
Main Authors: Chuanfeng Li, Hao Wu, Zhile Yang, Yongji Wang, Zeyu Sun
Format: Article
Language:English
Published: Hindawi-Wiley 2017-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2017/6034786
Description
Summary:Hypersonic vehicle is a typical parameter uncertain system with significant characteristics of strong coupling, nonlinearity, and external disturbance. In this paper, a combined system modeling approach is proposed to approximate the actual vehicle system. The state feedback control strategy is adopted based on the robust guaranteed cost control (RGCC) theory, where the Lyapunov function is applied to get control law for nonlinear system and the problem is transformed into a feasible solution by linear matrix inequalities (LMI) method. In addition, a nonfragile guaranteed cost controller solved by LMI optimization approach is employed to the linear error system, where a single hidden layer neural network (SHLNN) is employed as an additive gain compensator to reduce excessive performance caused by perturbations and uncertainties. Simulation results show the stability and well tracking performance for the proposed strategy in controlling the vehicle system.
ISSN:1076-2787
1099-0526