Cyclotomic Trace Codes

A generalization of Ding&#8217;s construction is proposed that employs as a defining set the collection of the <i>s</i>th powers (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>s</mi> <mo>&#8805;</mo> <...

Full description

Bibliographic Details
Main Authors: Dean Crnković, Andrea Švob, Vladimir D. Tonchev
Format: Article
Language:English
Published: MDPI AG 2019-08-01
Series:Algorithms
Subjects:
Online Access:https://www.mdpi.com/1999-4893/12/8/168
id doaj-0e029396a3ed4af08f65177b02c079b4
record_format Article
spelling doaj-0e029396a3ed4af08f65177b02c079b42020-11-24T22:20:48ZengMDPI AGAlgorithms1999-48932019-08-0112816810.3390/a12080168a12080168Cyclotomic Trace CodesDean Crnković0Andrea Švob1Vladimir D. Tonchev2Department of Mathematics, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, CroatiaDepartment of Mathematics, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, CroatiaDepartment of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, USAA generalization of Ding&#8217;s construction is proposed that employs as a defining set the collection of the <i>s</i>th powers (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>s</mi> <mo>&#8805;</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>) of all nonzero elements in <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mi>F</mi> <mo>(</mo> <msup> <mi>p</mi> <mi>m</mi> </msup> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>&#8805;</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> is prime. Some of the resulting codes are optimal or near-optimal and include projective codes over <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mi>F</mi> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> that give rise to optimal or near optimal quantum codes. In addition, the codes yield interesting combinatorial structures, such as strongly regular graphs and block designs.https://www.mdpi.com/1999-4893/12/8/168linear codetwo-weight codestrongly regular graphblock design
collection DOAJ
language English
format Article
sources DOAJ
author Dean Crnković
Andrea Švob
Vladimir D. Tonchev
spellingShingle Dean Crnković
Andrea Švob
Vladimir D. Tonchev
Cyclotomic Trace Codes
Algorithms
linear code
two-weight code
strongly regular graph
block design
author_facet Dean Crnković
Andrea Švob
Vladimir D. Tonchev
author_sort Dean Crnković
title Cyclotomic Trace Codes
title_short Cyclotomic Trace Codes
title_full Cyclotomic Trace Codes
title_fullStr Cyclotomic Trace Codes
title_full_unstemmed Cyclotomic Trace Codes
title_sort cyclotomic trace codes
publisher MDPI AG
series Algorithms
issn 1999-4893
publishDate 2019-08-01
description A generalization of Ding&#8217;s construction is proposed that employs as a defining set the collection of the <i>s</i>th powers (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>s</mi> <mo>&#8805;</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>) of all nonzero elements in <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mi>F</mi> <mo>(</mo> <msup> <mi>p</mi> <mi>m</mi> </msup> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>&#8805;</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> is prime. Some of the resulting codes are optimal or near-optimal and include projective codes over <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mi>F</mi> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> that give rise to optimal or near optimal quantum codes. In addition, the codes yield interesting combinatorial structures, such as strongly regular graphs and block designs.
topic linear code
two-weight code
strongly regular graph
block design
url https://www.mdpi.com/1999-4893/12/8/168
work_keys_str_mv AT deancrnkovic cyclotomictracecodes
AT andreasvob cyclotomictracecodes
AT vladimirdtonchev cyclotomictracecodes
_version_ 1725773848192745472