Applications of nanotechnology for melanoma treatment, diagnosis, and theranostics

Jiezhong Chen,1,2 Renfu Shao,3 Xu Dong Zhang,4 Chen Chen1 1School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia; 2Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia; 3GeneCology Research Centre, School of Science, Education and...

Full description

Bibliographic Details
Main Authors: Chen J, Shao R, Zhang XD, Chen C
Format: Article
Language:English
Published: Dove Medical Press 2013-07-01
Series:International Journal of Nanomedicine
Online Access:http://www.dovepress.com/applications-of-nanotechnology-for-melanoma-treatment-diagnosis-and-th-a13765
Description
Summary:Jiezhong Chen,1,2 Renfu Shao,3 Xu Dong Zhang,4 Chen Chen1 1School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia; 2Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia; 3GeneCology Research Centre, School of Science, Education and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia; 4School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia Abstract: Melanoma is the most aggressive type of skin cancer and has very high rates of mortality. An early stage melanoma can be surgically removed, with a survival rate of 99%. However, metastasized melanoma is difficult to cure. The 5-year survival rates for patients with metastasized melanoma are still below 20%. Metastasized melanoma is currently treated by chemotherapy, targeted therapy, immunotherapy and radiotherapy. The outcome of most of the current therapies is far from optimistic. Although melanoma patients with a mutation in the oncogene v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) have an initially higher positive response rate to targeted therapy, the majority develop acquired drug resistance after 6 months of the therapy. To increase treatment efficacy, early diagnosis, more potent pharmacological agents, and more effective delivery systems are urgently needed. Nanotechnology has been extensively studied for melanoma treatment and diagnosis, to decrease drug resistance, increase therapeutic efficacy, and reduce side effects. In this review, we summarize the recent progress on the development of various nanoparticles for melanoma treatment and diagnosis. Several common nanoparticles, including liposome, polymersomes, dendrimers, carbon-based nanoparticles, and human albumin, have been used to deliver chemotherapeutic agents, and small interfering ribonucleic acids (siRNAs) against signaling molecules have also been tested for the treatment of melanoma. Indeed, several nanoparticle-delivered drugs have been approved by the US Food and Drug Administration and are currently in clinical trials. The application of nanoparticles could produce side effects, which will need to be reduced so that nanoparticle-delivered drugs can be safely applied in the clinical setting. Keywords: metastasis, early detection, nanoparticle-delivered, PI3K/Akt
ISSN:1176-9114
1178-2013