Drosophila Ge-1 promotes P body formation and oskar mRNA localization.

mRNA localization coupled with translational control is a widespread and conserved strategy that allows the localized production of proteins within eukaryotic cells. In Drosophila, oskar (osk) mRNA localization and translation at the posterior pole of the oocyte are essential for proper patterning o...

Full description

Bibliographic Details
Main Authors: Shih-Jung Fan, Virginie Marchand, Anne Ephrussi
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2011-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3105097?pdf=render
Description
Summary:mRNA localization coupled with translational control is a widespread and conserved strategy that allows the localized production of proteins within eukaryotic cells. In Drosophila, oskar (osk) mRNA localization and translation at the posterior pole of the oocyte are essential for proper patterning of the embryo. Several P body components are involved in osk mRNA localization and translational repression, suggesting a link between P bodies and osk RNPs. In cultured mammalian cells, Ge-1 protein is required for P body formation. Combining genetic, biochemical and immunohistochemical approaches, we show that, in vivo, Drosophila Ge-1 (dGe-1) is an essential gene encoding a P body component that promotes formation of these structures in the germline. dGe-1 partially colocalizes with osk mRNA and is required for osk RNP integrity. Our analysis reveals that although under normal conditions dGe-1 function is not essential for osk mRNA localization, it becomes critical when other components of the localization machinery, such as staufen, Drosophila decapping protein 1 and barentsz are limiting. Our findings suggest an important role of dGe-1 in optimization of the osk mRNA localization process required for patterning the Drosophila embryo.
ISSN:1932-6203