Exploring subdomain variation in biomedical language

<p>Abstract</p> <p>Background</p> <p>Applications of Natural Language Processing (NLP) technology to biomedical texts have generated significant interest in recent years. In this paper we identify and investigate the phenomenon of linguistic <it>subdomain variatio...

Full description

Bibliographic Details
Main Authors: Séaghdha Diarmuid Ó, Lippincott Thomas, Korhonen Anna
Format: Article
Language:English
Published: BMC 2011-05-01
Series:BMC Bioinformatics
Online Access:http://www.biomedcentral.com/1471-2105/12/212
Description
Summary:<p>Abstract</p> <p>Background</p> <p>Applications of Natural Language Processing (NLP) technology to biomedical texts have generated significant interest in recent years. In this paper we identify and investigate the phenomenon of linguistic <it>subdomain variation </it>within the biomedical domain, i.e., the extent to which different subject areas of biomedicine are characterised by different linguistic behaviour. While variation at a coarser domain level such as between newswire and biomedical text is well-studied and known to affect the portability of NLP systems, we are the first to conduct an extensive investigation into more fine-grained levels of variation.</p> <p>Results</p> <p>Using the large OpenPMC text corpus, which spans the many subdomains of biomedicine, we investigate variation across a number of lexical, syntactic, semantic and discourse-related dimensions. These dimensions are chosen for their relevance to the performance of NLP systems. We use clustering techniques to analyse commonalities and distinctions among the subdomains.</p> <p>Conclusions</p> <p>We find that while patterns of inter-subdomain variation differ somewhat from one feature set to another, robust clusters can be identified that correspond to intuitive distinctions such as that between clinical and laboratory subjects. In particular, subdomains relating to genetics and molecular biology, which are the most common sources of material for training and evaluating biomedical NLP tools, are not representative of all biomedical subdomains. We conclude that an awareness of subdomain variation is important when considering the practical use of language processing applications by biomedical researchers.</p>
ISSN:1471-2105