Multiscale influenza forecasting

Influenza forecasting in the United States is challenging and consequential, with the ability to improve the public health response. Here the authors show the performance of the multiscale flu forecasting model, Dante, that won the CDC’s 2018/19 national, regional and state flu forecasting challenge...

Full description

Bibliographic Details
Main Authors: Dave Osthus, Kelly R. Moran
Format: Article
Language:English
Published: Nature Publishing Group 2021-05-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-021-23234-5
id doaj-0db49a9184444d2a95732ba48372ba74
record_format Article
spelling doaj-0db49a9184444d2a95732ba48372ba742021-05-23T11:13:09ZengNature Publishing GroupNature Communications2041-17232021-05-0112111110.1038/s41467-021-23234-5Multiscale influenza forecastingDave Osthus0Kelly R. Moran1Los Alamos National Laboratory, Statistical Sciences GroupLos Alamos National Laboratory, Statistical Sciences GroupInfluenza forecasting in the United States is challenging and consequential, with the ability to improve the public health response. Here the authors show the performance of the multiscale flu forecasting model, Dante, that won the CDC’s 2018/19 national, regional and state flu forecasting challenges.https://doi.org/10.1038/s41467-021-23234-5
collection DOAJ
language English
format Article
sources DOAJ
author Dave Osthus
Kelly R. Moran
spellingShingle Dave Osthus
Kelly R. Moran
Multiscale influenza forecasting
Nature Communications
author_facet Dave Osthus
Kelly R. Moran
author_sort Dave Osthus
title Multiscale influenza forecasting
title_short Multiscale influenza forecasting
title_full Multiscale influenza forecasting
title_fullStr Multiscale influenza forecasting
title_full_unstemmed Multiscale influenza forecasting
title_sort multiscale influenza forecasting
publisher Nature Publishing Group
series Nature Communications
issn 2041-1723
publishDate 2021-05-01
description Influenza forecasting in the United States is challenging and consequential, with the ability to improve the public health response. Here the authors show the performance of the multiscale flu forecasting model, Dante, that won the CDC’s 2018/19 national, regional and state flu forecasting challenges.
url https://doi.org/10.1038/s41467-021-23234-5
work_keys_str_mv AT daveosthus multiscaleinfluenzaforecasting
AT kellyrmoran multiscaleinfluenzaforecasting
_version_ 1721430033985175552