50Hz Extremely Low Frequency Electromagnetic Fields Enhance Protein Carbonyl Groups Content in Cancer Cells: Effects on Proteasomal Systems
Electromagnetic fields are an assessed cause of prolonging free radicals lifespan. This study was carried out to investigate the influence of extremely low frequency electromagnetic fields on protein oxidation and on the 20S proteasome functionality, the complex responsible for the degradation of ox...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2009-01-01
|
Series: | Journal of Biomedicine and Biotechnology |
Online Access: | http://dx.doi.org/10.1155/2009/834239 |
id |
doaj-0daf1e4d1bc04ec4a2c3c85fbb43c4ec |
---|---|
record_format |
Article |
spelling |
doaj-0daf1e4d1bc04ec4a2c3c85fbb43c4ec2020-11-25T01:38:20ZengHindawi LimitedJournal of Biomedicine and Biotechnology1110-72431110-72512009-01-01200910.1155/2009/83423983423950Hz Extremely Low Frequency Electromagnetic Fields Enhance Protein Carbonyl Groups Content in Cancer Cells: Effects on Proteasomal SystemsA. M. Eleuteri0M. Amici1L. Bonfili2V. Cecarini3M. Cuccioloni4S. Grimaldi5L. Giuliani6M. Angeletti7E. Fioretti8Department of Biology M.C.A., University of Camerino, 62032 Camerino (MC), ItalyDepartment of Biology M.C.A., University of Camerino, 62032 Camerino (MC), ItalyDepartment of Biology M.C.A., University of Camerino, 62032 Camerino (MC), ItalyDepartment of Biology M.C.A., University of Camerino, 62032 Camerino (MC), ItalyDepartment of Biology M.C.A., University of Camerino, 62032 Camerino (MC), ItalyInstitute of Neurobiology and Molecular Medicine, Division of Medicine, CNR, 00143 Rome, ItalyIstituto Superiore Prevenzione e Sicurezza Lavoro (ISPESL), Division of Venice, 30172 Venezia, ItalyDepartment of Biology M.C.A., University of Camerino, 62032 Camerino (MC), ItalyDepartment of Biology M.C.A., University of Camerino, 62032 Camerino (MC), ItalyElectromagnetic fields are an assessed cause of prolonging free radicals lifespan. This study was carried out to investigate the influence of extremely low frequency electromagnetic fields on protein oxidation and on the 20S proteasome functionality, the complex responsible for the degradation of oxidized proteins. Caco 2 cells were exposed, for 24–72 hours, to 1 mT, 50 Hz electromagnetic fields. The treatment induced a time-dependent increase both in cell growth and in protein oxidation, more evident in the presence of TPA, while no changes in cell viability were detected. Exposing the cells to 50 Hz electromagnetic fields caused a global activation of the 20S proteasome catalytic components, particularly evident at 72 hours exposure and in the presence of TPA. The finding that EGCG, a natural antioxidant compound, counteracted the field-related pro-oxidant effects demonstrates that the increased proteasome activity was due to an enhancement in intracellular free radicals.http://dx.doi.org/10.1155/2009/834239 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
A. M. Eleuteri M. Amici L. Bonfili V. Cecarini M. Cuccioloni S. Grimaldi L. Giuliani M. Angeletti E. Fioretti |
spellingShingle |
A. M. Eleuteri M. Amici L. Bonfili V. Cecarini M. Cuccioloni S. Grimaldi L. Giuliani M. Angeletti E. Fioretti 50Hz Extremely Low Frequency Electromagnetic Fields Enhance Protein Carbonyl Groups Content in Cancer Cells: Effects on Proteasomal Systems Journal of Biomedicine and Biotechnology |
author_facet |
A. M. Eleuteri M. Amici L. Bonfili V. Cecarini M. Cuccioloni S. Grimaldi L. Giuliani M. Angeletti E. Fioretti |
author_sort |
A. M. Eleuteri |
title |
50Hz Extremely Low Frequency Electromagnetic Fields Enhance Protein Carbonyl Groups Content in Cancer Cells: Effects on Proteasomal Systems |
title_short |
50Hz Extremely Low Frequency Electromagnetic Fields Enhance Protein Carbonyl Groups Content in Cancer Cells: Effects on Proteasomal Systems |
title_full |
50Hz Extremely Low Frequency Electromagnetic Fields Enhance Protein Carbonyl Groups Content in Cancer Cells: Effects on Proteasomal Systems |
title_fullStr |
50Hz Extremely Low Frequency Electromagnetic Fields Enhance Protein Carbonyl Groups Content in Cancer Cells: Effects on Proteasomal Systems |
title_full_unstemmed |
50Hz Extremely Low Frequency Electromagnetic Fields Enhance Protein Carbonyl Groups Content in Cancer Cells: Effects on Proteasomal Systems |
title_sort |
50hz extremely low frequency electromagnetic fields enhance protein carbonyl groups content in cancer cells: effects on proteasomal systems |
publisher |
Hindawi Limited |
series |
Journal of Biomedicine and Biotechnology |
issn |
1110-7243 1110-7251 |
publishDate |
2009-01-01 |
description |
Electromagnetic fields are an assessed cause of prolonging free radicals lifespan. This study was carried out to investigate the influence of extremely low frequency electromagnetic fields on protein oxidation and on the 20S proteasome functionality, the complex responsible for the degradation of oxidized proteins. Caco 2 cells were exposed, for 24–72 hours, to 1 mT, 50 Hz electromagnetic fields. The treatment induced a time-dependent increase both in cell growth and in protein oxidation, more evident in the presence of TPA, while no changes in cell viability were detected. Exposing the cells to 50 Hz electromagnetic fields caused a global activation of the 20S proteasome catalytic components, particularly evident at 72 hours exposure and in the presence of TPA. The finding that EGCG, a natural antioxidant compound, counteracted the field-related pro-oxidant effects demonstrates that the increased proteasome activity was due to an enhancement in intracellular free radicals. |
url |
http://dx.doi.org/10.1155/2009/834239 |
work_keys_str_mv |
AT ameleuteri 50hzextremelylowfrequencyelectromagneticfieldsenhanceproteincarbonylgroupscontentincancercellseffectsonproteasomalsystems AT mamici 50hzextremelylowfrequencyelectromagneticfieldsenhanceproteincarbonylgroupscontentincancercellseffectsonproteasomalsystems AT lbonfili 50hzextremelylowfrequencyelectromagneticfieldsenhanceproteincarbonylgroupscontentincancercellseffectsonproteasomalsystems AT vcecarini 50hzextremelylowfrequencyelectromagneticfieldsenhanceproteincarbonylgroupscontentincancercellseffectsonproteasomalsystems AT mcuccioloni 50hzextremelylowfrequencyelectromagneticfieldsenhanceproteincarbonylgroupscontentincancercellseffectsonproteasomalsystems AT sgrimaldi 50hzextremelylowfrequencyelectromagneticfieldsenhanceproteincarbonylgroupscontentincancercellseffectsonproteasomalsystems AT lgiuliani 50hzextremelylowfrequencyelectromagneticfieldsenhanceproteincarbonylgroupscontentincancercellseffectsonproteasomalsystems AT mangeletti 50hzextremelylowfrequencyelectromagneticfieldsenhanceproteincarbonylgroupscontentincancercellseffectsonproteasomalsystems AT efioretti 50hzextremelylowfrequencyelectromagneticfieldsenhanceproteincarbonylgroupscontentincancercellseffectsonproteasomalsystems |
_version_ |
1725054455771037696 |