Modelling and multi objective optimization of LM13 aluminium alloy squeeze cast process parameters using taguchi and genetic algorithm

This present investigation deals with squeeze casting process in order to produce a component with good mechanical properties such as micro-hardness(VH), tensile strength(R<sub>m</sub>), and density(ρ) on LM13 by varying squeeze pressure(P), molten temperature(T<sub>m</sub>)...

Full description

Bibliographic Details
Main Authors: S. Vellingiri, V. Senthil, N. Zeelanbasha
Format: Article
Language:English
Published: Croatian Metallurgical Society 2018-01-01
Series:Metalurgija
Subjects:
Online Access:http://hrcak.srce.hr/file/278966
id doaj-0dae7f419ae640d0a0c642c6b6a5ae78
record_format Article
spelling doaj-0dae7f419ae640d0a0c642c6b6a5ae782020-11-24T23:50:53ZengCroatian Metallurgical SocietyMetalurgija0543-58461334-25762018-01-01571-25558Modelling and multi objective optimization of LM13 aluminium alloy squeeze cast process parameters using taguchi and genetic algorithm S. Vellingiri0V. Senthil1N. Zeelanbasha2Department of Mechanical Engineering, Coimbatore Institute of Technology, IndiaDepartment of Mechanical Engineering, Coimbatore Institute of Technology, IndiaDepartment of Mechanical Engineering, Coimbatore Institute of Technology, IndiaThis present investigation deals with squeeze casting process in order to produce a component with good mechanical properties such as micro-hardness(VH), tensile strength(R<sub>m</sub>), and density(ρ) on LM13 by varying squeeze pressure(P), molten temperature(T<sub>m</sub>) and die temperature(T<sub>d</sub>). Taguchi experimental design L9 orthogonal array was used to determine the signal to noise ratio. The results specified that the squeeze pressure and die preheat temperature are the most influencing parameters for mechanical properties improvement. Genetic algorithm (GA) has been applied to optimize the casting parameters that simultaneously maximize the responses.http://hrcak.srce.hr/file/278966die castingaluminum alloymicrostructuremechanical propertiestaguchi
collection DOAJ
language English
format Article
sources DOAJ
author S. Vellingiri
V. Senthil
N. Zeelanbasha
spellingShingle S. Vellingiri
V. Senthil
N. Zeelanbasha
Modelling and multi objective optimization of LM13 aluminium alloy squeeze cast process parameters using taguchi and genetic algorithm
Metalurgija
die casting
aluminum alloy
microstructure
mechanical properties
taguchi
author_facet S. Vellingiri
V. Senthil
N. Zeelanbasha
author_sort S. Vellingiri
title Modelling and multi objective optimization of LM13 aluminium alloy squeeze cast process parameters using taguchi and genetic algorithm
title_short Modelling and multi objective optimization of LM13 aluminium alloy squeeze cast process parameters using taguchi and genetic algorithm
title_full Modelling and multi objective optimization of LM13 aluminium alloy squeeze cast process parameters using taguchi and genetic algorithm
title_fullStr Modelling and multi objective optimization of LM13 aluminium alloy squeeze cast process parameters using taguchi and genetic algorithm
title_full_unstemmed Modelling and multi objective optimization of LM13 aluminium alloy squeeze cast process parameters using taguchi and genetic algorithm
title_sort modelling and multi objective optimization of lm13 aluminium alloy squeeze cast process parameters using taguchi and genetic algorithm
publisher Croatian Metallurgical Society
series Metalurgija
issn 0543-5846
1334-2576
publishDate 2018-01-01
description This present investigation deals with squeeze casting process in order to produce a component with good mechanical properties such as micro-hardness(VH), tensile strength(R<sub>m</sub>), and density(ρ) on LM13 by varying squeeze pressure(P), molten temperature(T<sub>m</sub>) and die temperature(T<sub>d</sub>). Taguchi experimental design L9 orthogonal array was used to determine the signal to noise ratio. The results specified that the squeeze pressure and die preheat temperature are the most influencing parameters for mechanical properties improvement. Genetic algorithm (GA) has been applied to optimize the casting parameters that simultaneously maximize the responses.
topic die casting
aluminum alloy
microstructure
mechanical properties
taguchi
url http://hrcak.srce.hr/file/278966
work_keys_str_mv AT svellingiri modellingandmultiobjectiveoptimizationoflm13aluminiumalloysqueezecastprocessparametersusingtaguchiandgeneticalgorithm
AT vsenthil modellingandmultiobjectiveoptimizationoflm13aluminiumalloysqueezecastprocessparametersusingtaguchiandgeneticalgorithm
AT nzeelanbasha modellingandmultiobjectiveoptimizationoflm13aluminiumalloysqueezecastprocessparametersusingtaguchiandgeneticalgorithm
_version_ 1725478578066292736