A Self-Contained Cylinder Drive with Indirectly Controlled Hydraulic Lock
This paper presents a self-contained pump-controlled hydraulic linear drive including an innovative load holding sub-circuit. For safety critical applications such as crane manipulators, locking valves or load holding valves are enforced by legislation, but the load holding functionality may also be...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Norwegian Society of Automatic Control
2020-07-01
|
Series: | Modeling, Identification and Control |
Subjects: | |
Online Access: | http://www.mic-journal.no/PDF/2020/MIC-2020-3-4.pdf |
id |
doaj-0dae3e586b1240a9bf66a25f75b8b792 |
---|---|
record_format |
Article |
spelling |
doaj-0dae3e586b1240a9bf66a25f75b8b7922020-11-25T02:45:44ZengNorwegian Society of Automatic ControlModeling, Identification and Control0332-73531890-13282020-07-0141318520510.4173/mic.2020.3.4A Self-Contained Cylinder Drive with Indirectly Controlled Hydraulic LockSøren KetelsenTorben Ole AndersenMorten K. EbbesenLasse SchmidtThis paper presents a self-contained pump-controlled hydraulic linear drive including an innovative load holding sub-circuit. For safety critical applications such as crane manipulators, locking valves or load holding valves are enforced by legislation, but the load holding functionality may also be used actively to decrease the energy consumption for applications where the load is kept stationary for longer periods of time. The system proposed in this paper is based on a simple hydraulic architecture using two variable-speed electric motors each connected to a fixed-displacement pump. This architecture is well-known in academic literature, but in this paper a novel load holding sub-circuit has been included. To control this load holding functionality, the low chamber pressure needs to be controlled accurately, while still being able to control the motion of the cylinder piston as well. Due to strong cross-couplings between cylinder piston motion and chamber pressures this task is non-trivial. The control for opening the locking valves is indirect in the sense that it is controlled via the chamber pressures, which are actively controlled. The fundamental control strategy presented in this paper is based on transforming the highly coupled physical states to virtual states, significantly reducing cross-couplings.http://www.mic-journal.no/PDF/2020/MIC-2020-3-4.pdfenergy efficient hydraulic actuationpump-controlled cylindercylinder direct drivemultivariable controlload holdingsafety functionalitycylinder lock |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Søren Ketelsen Torben Ole Andersen Morten K. Ebbesen Lasse Schmidt |
spellingShingle |
Søren Ketelsen Torben Ole Andersen Morten K. Ebbesen Lasse Schmidt A Self-Contained Cylinder Drive with Indirectly Controlled Hydraulic Lock Modeling, Identification and Control energy efficient hydraulic actuation pump-controlled cylinder cylinder direct drive multivariable control load holding safety functionality cylinder lock |
author_facet |
Søren Ketelsen Torben Ole Andersen Morten K. Ebbesen Lasse Schmidt |
author_sort |
Søren Ketelsen |
title |
A Self-Contained Cylinder Drive with Indirectly Controlled Hydraulic Lock |
title_short |
A Self-Contained Cylinder Drive with Indirectly Controlled Hydraulic Lock |
title_full |
A Self-Contained Cylinder Drive with Indirectly Controlled Hydraulic Lock |
title_fullStr |
A Self-Contained Cylinder Drive with Indirectly Controlled Hydraulic Lock |
title_full_unstemmed |
A Self-Contained Cylinder Drive with Indirectly Controlled Hydraulic Lock |
title_sort |
self-contained cylinder drive with indirectly controlled hydraulic lock |
publisher |
Norwegian Society of Automatic Control |
series |
Modeling, Identification and Control |
issn |
0332-7353 1890-1328 |
publishDate |
2020-07-01 |
description |
This paper presents a self-contained pump-controlled hydraulic linear drive including an innovative load holding sub-circuit. For safety critical applications such as crane manipulators, locking valves or load holding valves are enforced by legislation, but the load holding functionality may also be used actively to decrease the energy consumption for applications where the load is kept stationary for longer periods of time. The system proposed in this paper is based on a simple hydraulic architecture using two variable-speed electric motors each connected to a fixed-displacement pump. This architecture is well-known in academic literature, but in this paper a novel load holding sub-circuit has been included. To control this load holding functionality, the low chamber pressure needs to be controlled accurately, while still being able to control the motion of the cylinder piston as well. Due to strong cross-couplings between cylinder piston motion and chamber pressures this task is non-trivial. The control for opening the locking valves is indirect in the sense that it is controlled via the chamber pressures, which are actively controlled. The fundamental control strategy presented in this paper is based on transforming the highly coupled physical states to virtual states, significantly reducing cross-couplings. |
topic |
energy efficient hydraulic actuation pump-controlled cylinder cylinder direct drive multivariable control load holding safety functionality cylinder lock |
url |
http://www.mic-journal.no/PDF/2020/MIC-2020-3-4.pdf |
work_keys_str_mv |
AT sørenketelsen aselfcontainedcylinderdrivewithindirectlycontrolledhydrauliclock AT torbenoleandersen aselfcontainedcylinderdrivewithindirectlycontrolledhydrauliclock AT mortenkebbesen aselfcontainedcylinderdrivewithindirectlycontrolledhydrauliclock AT lasseschmidt aselfcontainedcylinderdrivewithindirectlycontrolledhydrauliclock AT sørenketelsen selfcontainedcylinderdrivewithindirectlycontrolledhydrauliclock AT torbenoleandersen selfcontainedcylinderdrivewithindirectlycontrolledhydrauliclock AT mortenkebbesen selfcontainedcylinderdrivewithindirectlycontrolledhydrauliclock AT lasseschmidt selfcontainedcylinderdrivewithindirectlycontrolledhydrauliclock |
_version_ |
1724760696041766912 |