The role of PKA in the translational response to heat stress in Saccharomyces cerevisiae.
Cellular responses to stress stem from a variety of different mechanisms, including translation arrest and relocation of the translationally repressed mRNAs to ribonucleoprotein particles like stress granules (SGs) and processing bodies (PBs). Here, we examine the role of PKA in the S. cerevisiae he...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2017-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0185416 |
id |
doaj-0da646c256a440da968388a2bb703286 |
---|---|
record_format |
Article |
spelling |
doaj-0da646c256a440da968388a2bb7032862021-03-04T12:41:04ZengPublic Library of Science (PLoS)PLoS ONE1932-62032017-01-011210e018541610.1371/journal.pone.0185416The role of PKA in the translational response to heat stress in Saccharomyces cerevisiae.Carla E BarrazaClara A SolariIrina MarcovichChristopher KershawFiorella GalelloSilvia RossiMark P AshePaula PortelaCellular responses to stress stem from a variety of different mechanisms, including translation arrest and relocation of the translationally repressed mRNAs to ribonucleoprotein particles like stress granules (SGs) and processing bodies (PBs). Here, we examine the role of PKA in the S. cerevisiae heat shock response. Under mild heat stress Tpk3 aggregates and promotes aggregation of eIF4G, Pab1 and eIF4E, whereas severe heat stress leads to the formation of PBs and SGs that contain both Tpk2 and Tpk3 and a larger 48S translation initiation complex. Deletion of TPK2 or TPK3 impacts upon the translational response to heat stress of several mRNAs including CYC1, HSP42, HSP30 and ENO2. TPK2 deletion leads to a robust translational arrest, an increase in SGs/PBs aggregation and translational hypersensitivity to heat stress, whereas TPK3 deletion represses SGs/PBs formation, translational arrest and response for the analyzed mRNAs. Therefore, this work provides evidence indicating that Tpk2 and Tpk3 have opposing roles in translational adaptation during heat stress, and highlight how the same signaling pathway can be regulated to generate strikingly distinct physiological outputs.https://doi.org/10.1371/journal.pone.0185416 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Carla E Barraza Clara A Solari Irina Marcovich Christopher Kershaw Fiorella Galello Silvia Rossi Mark P Ashe Paula Portela |
spellingShingle |
Carla E Barraza Clara A Solari Irina Marcovich Christopher Kershaw Fiorella Galello Silvia Rossi Mark P Ashe Paula Portela The role of PKA in the translational response to heat stress in Saccharomyces cerevisiae. PLoS ONE |
author_facet |
Carla E Barraza Clara A Solari Irina Marcovich Christopher Kershaw Fiorella Galello Silvia Rossi Mark P Ashe Paula Portela |
author_sort |
Carla E Barraza |
title |
The role of PKA in the translational response to heat stress in Saccharomyces cerevisiae. |
title_short |
The role of PKA in the translational response to heat stress in Saccharomyces cerevisiae. |
title_full |
The role of PKA in the translational response to heat stress in Saccharomyces cerevisiae. |
title_fullStr |
The role of PKA in the translational response to heat stress in Saccharomyces cerevisiae. |
title_full_unstemmed |
The role of PKA in the translational response to heat stress in Saccharomyces cerevisiae. |
title_sort |
role of pka in the translational response to heat stress in saccharomyces cerevisiae. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2017-01-01 |
description |
Cellular responses to stress stem from a variety of different mechanisms, including translation arrest and relocation of the translationally repressed mRNAs to ribonucleoprotein particles like stress granules (SGs) and processing bodies (PBs). Here, we examine the role of PKA in the S. cerevisiae heat shock response. Under mild heat stress Tpk3 aggregates and promotes aggregation of eIF4G, Pab1 and eIF4E, whereas severe heat stress leads to the formation of PBs and SGs that contain both Tpk2 and Tpk3 and a larger 48S translation initiation complex. Deletion of TPK2 or TPK3 impacts upon the translational response to heat stress of several mRNAs including CYC1, HSP42, HSP30 and ENO2. TPK2 deletion leads to a robust translational arrest, an increase in SGs/PBs aggregation and translational hypersensitivity to heat stress, whereas TPK3 deletion represses SGs/PBs formation, translational arrest and response for the analyzed mRNAs. Therefore, this work provides evidence indicating that Tpk2 and Tpk3 have opposing roles in translational adaptation during heat stress, and highlight how the same signaling pathway can be regulated to generate strikingly distinct physiological outputs. |
url |
https://doi.org/10.1371/journal.pone.0185416 |
work_keys_str_mv |
AT carlaebarraza theroleofpkainthetranslationalresponsetoheatstressinsaccharomycescerevisiae AT claraasolari theroleofpkainthetranslationalresponsetoheatstressinsaccharomycescerevisiae AT irinamarcovich theroleofpkainthetranslationalresponsetoheatstressinsaccharomycescerevisiae AT christopherkershaw theroleofpkainthetranslationalresponsetoheatstressinsaccharomycescerevisiae AT fiorellagalello theroleofpkainthetranslationalresponsetoheatstressinsaccharomycescerevisiae AT silviarossi theroleofpkainthetranslationalresponsetoheatstressinsaccharomycescerevisiae AT markpashe theroleofpkainthetranslationalresponsetoheatstressinsaccharomycescerevisiae AT paulaportela theroleofpkainthetranslationalresponsetoheatstressinsaccharomycescerevisiae AT carlaebarraza roleofpkainthetranslationalresponsetoheatstressinsaccharomycescerevisiae AT claraasolari roleofpkainthetranslationalresponsetoheatstressinsaccharomycescerevisiae AT irinamarcovich roleofpkainthetranslationalresponsetoheatstressinsaccharomycescerevisiae AT christopherkershaw roleofpkainthetranslationalresponsetoheatstressinsaccharomycescerevisiae AT fiorellagalello roleofpkainthetranslationalresponsetoheatstressinsaccharomycescerevisiae AT silviarossi roleofpkainthetranslationalresponsetoheatstressinsaccharomycescerevisiae AT markpashe roleofpkainthetranslationalresponsetoheatstressinsaccharomycescerevisiae AT paulaportela roleofpkainthetranslationalresponsetoheatstressinsaccharomycescerevisiae |
_version_ |
1714801864479866880 |