On irregularity strength of diamond network

In this paper we investigate the total edge irregularity strength tes ( G ) and the total vertex irregularity strength tvs ( G ) of diamond graphs B r n and prove that tes ( B r n ) = ( 5 n − 3 ) ∕ 3 , while tvs ( B r n ) = ( n + 1 ) ∕ 3 . Keywords: Total edge irregularity strength, Total vertex irr...

Full description

Bibliographic Details
Main Authors: Nurdin Hinding, Dian Firmayasari, Hasmawati Basir, Martin Bača, Andrea Semaničová-Feňovčíková
Format: Article
Language:English
Published: Taylor & Francis Group 2018-12-01
Series:AKCE International Journal of Graphs and Combinatorics
Online Access:http://www.sciencedirect.com/science/article/pii/S0972860017302098
id doaj-0d87810d9bba42cf94f2f74bdef1a432
record_format Article
spelling doaj-0d87810d9bba42cf94f2f74bdef1a4322020-11-25T03:51:01ZengTaylor & Francis GroupAKCE International Journal of Graphs and Combinatorics0972-86002018-12-01153291297On irregularity strength of diamond networkNurdin Hinding0Dian Firmayasari1Hasmawati Basir2Martin Bača3Andrea Semaničová-Feňovčíková4Mathematics Department, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10 Tamalanrea, Makassar, IndonesiaMathematics Department, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10 Tamalanrea, Makassar, IndonesiaMathematics Department, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10 Tamalanrea, Makassar, IndonesiaDepartment of Applied Mathematics and Informatics, Technical University, Košice, SlovakiaDepartment of Applied Mathematics and Informatics, Technical University, Košice, Slovakia; Corresponding author.In this paper we investigate the total edge irregularity strength tes ( G ) and the total vertex irregularity strength tvs ( G ) of diamond graphs B r n and prove that tes ( B r n ) = ( 5 n − 3 ) ∕ 3 , while tvs ( B r n ) = ( n + 1 ) ∕ 3 . Keywords: Total edge irregularity strength, Total vertex irregularity strength, Diamond graphshttp://www.sciencedirect.com/science/article/pii/S0972860017302098
collection DOAJ
language English
format Article
sources DOAJ
author Nurdin Hinding
Dian Firmayasari
Hasmawati Basir
Martin Bača
Andrea Semaničová-Feňovčíková
spellingShingle Nurdin Hinding
Dian Firmayasari
Hasmawati Basir
Martin Bača
Andrea Semaničová-Feňovčíková
On irregularity strength of diamond network
AKCE International Journal of Graphs and Combinatorics
author_facet Nurdin Hinding
Dian Firmayasari
Hasmawati Basir
Martin Bača
Andrea Semaničová-Feňovčíková
author_sort Nurdin Hinding
title On irregularity strength of diamond network
title_short On irregularity strength of diamond network
title_full On irregularity strength of diamond network
title_fullStr On irregularity strength of diamond network
title_full_unstemmed On irregularity strength of diamond network
title_sort on irregularity strength of diamond network
publisher Taylor & Francis Group
series AKCE International Journal of Graphs and Combinatorics
issn 0972-8600
publishDate 2018-12-01
description In this paper we investigate the total edge irregularity strength tes ( G ) and the total vertex irregularity strength tvs ( G ) of diamond graphs B r n and prove that tes ( B r n ) = ( 5 n − 3 ) ∕ 3 , while tvs ( B r n ) = ( n + 1 ) ∕ 3 . Keywords: Total edge irregularity strength, Total vertex irregularity strength, Diamond graphs
url http://www.sciencedirect.com/science/article/pii/S0972860017302098
work_keys_str_mv AT nurdinhinding onirregularitystrengthofdiamondnetwork
AT dianfirmayasari onirregularitystrengthofdiamondnetwork
AT hasmawatibasir onirregularitystrengthofdiamondnetwork
AT martinbaca onirregularitystrengthofdiamondnetwork
AT andreasemanicovafenovcikova onirregularitystrengthofdiamondnetwork
_version_ 1724489241931546624