Analysis and Modeling of a MIMO Ultrasonic Sensorial Structure based on M-CSS and correlation techniques.
This paper describes the analysis and modeling of an ultrasonic sensorial structure based on processing algorithm that uses a set of macro-sequences and correlation techniques for obtaining the impulse response of transmission channels simultaneously is proposed. The sensory structure is formed by m...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | Spanish |
Published: |
Universitat Politecnica de Valencia
2015-07-01
|
Series: | Revista Iberoamericana de Automática e Informática Industrial RIAI |
Subjects: | |
Online Access: | https://polipapers.upv.es/index.php/RIAI/article/view/9361 |
Summary: | This paper describes the analysis and modeling of an ultrasonic sensorial structure based on processing algorithm that uses a set of macro-sequences and correlation techniques for obtaining the impulse response of transmission channels simultaneously is proposed. The sensory structure is formed by multiple ultrasonic transducers that transmitting and receiving environment information simultaneously. This processing algorithm employs a pseudorandom macro-sequence obtained from a complementary set of M sequences (M- CSS) which, by auto-correlation and cross-correlation functions, the impulse responses from environment are obtained. The transmission in the ultrasonic system is represented by frequency selective MIMO model, which is analyzed every instant in the process of reflection-transmission-reception of the signals generated. Once the system model of ultrasonic transmission MIMO is developed and correlation algorithms are implemented for the detection of macro-sequences; the mathematical model, the results obtained in the simulation as well as experimental evidence are presented in this paper. These validate the use of the methodology applied to the channel modeling as well as the estimation of the impulse response of the transmission channels to process the received echoes corresponding to an object in front of the sensor system. The model implemented allows it on can develop algorithms and processing techniques, before they are physically implemented, in order to reduce application development time. In all such cases, is possible to obtain the impulse responses produced in the environment due to the reflectors located opposite the sensor system using correlation techniques. |
---|---|
ISSN: | 1697-7912 1697-7920 |