Fe-Nanoporous Carbon Derived from MIL-53(Fe): A Heterogeneous Catalyst for Mineralization of Organic Pollutants
Catalytic electrodes were prepared via carbonization of MIL-53(Fe) on the surface of porous carbon felt electrodes (CF) for use in wastewater treatment by the heterogeneous electro-Fenton (EF) process. The best results were obtained when the carbon felt was pretreated with nitric acid, enhancing the...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-04-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-4991/9/4/641 |
Summary: | Catalytic electrodes were prepared via carbonization of MIL-53(Fe) on the surface of porous carbon felt electrodes (CF) for use in wastewater treatment by the heterogeneous electro-Fenton (EF) process. The best results were obtained when the carbon felt was pretreated with nitric acid, enhancing the affinity of the MIL-53(Fe) for the surface. Following a series of optimization experiments, carbonization conditions of 800 °C for 5 h were used to form Fe-nanoporous carbon (MOFs@CF). The as-prepared electrodes were used as both cathode and heterogeneous catalyst in the EF process for the mineralization of exemplar dye Acid Orange 7 (AO7). Total organic carbon (TOC) removal of 46.1% was obtained within 8 h of electrolysis at around neutral pH (6.5) and the electrode retained over 80% of its original efficiency over five treatment cycles. |
---|---|
ISSN: | 2079-4991 |