A Sharp Oscillation Criterion for a Linear Differential Equation with Variable Delay

We consider linear differential equations with variable delay of the form <disp-formula> <math display="block"> <semantics> <mrow> <msup> <mi>x</mi> <mo>&#8242;</mo> </msup> <mrow> <mo>(</mo> <mi>t</...

Full description

Bibliographic Details
Main Author: Ábel Garab
Format: Article
Language:English
Published: MDPI AG 2019-10-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/11/1332
id doaj-0d6e2b6943ce40c6840ac607608a260c
record_format Article
spelling doaj-0d6e2b6943ce40c6840ac607608a260c2020-11-25T01:34:39ZengMDPI AGSymmetry2073-89942019-10-011111133210.3390/sym11111332sym11111332A Sharp Oscillation Criterion for a Linear Differential Equation with Variable DelayÁbel Garab0Institute of Mathematics, University of Klagenfurt, Universitätsstraße 65–67, 9020 Klagenfurt am Wörthersee, AustriaWe consider linear differential equations with variable delay of the form <disp-formula> <math display="block"> <semantics> <mrow> <msup> <mi>x</mi> <mo>&#8242;</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>&#8722;</mo> <mi>&#964;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mo>=</mo> <mn>0</mn> </mrow> <mo>,</mo> <mspace width="2.em"></mspace> <mi>t</mi> <mo>&#8805;</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> </mrow> </semantics> </math> </disp-formula> where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo lspace="0pt">:</mo> <mrow> <mo>[</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mo>&#8734;</mo> <mo>)</mo> </mrow> <mo>&#8594;</mo> <mrow> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mo>&#8734;</mo> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#964;</mi> <mo lspace="0pt">:</mo> <mrow> <mo>[</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mo>&#8734;</mo> <mo>)</mo> </mrow> <mo>&#8594;</mo> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mo>&#8734;</mo> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> are continuous functions, such that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>&#8722;</mo> <mi>&#964;</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>&#8594;</mo> <mo>&#8734;</mo> </mrow> </semantics> </math> </inline-formula> (as <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>&#8594;</mo> <mo>&#8734;</mo> </mrow> </semantics> </math> </inline-formula>). It is well-known that, for the oscillation of all solutions, it is necessary that <disp-formula> <math display="block"> <semantics> <mrow> <mi>B</mi> <mo>:</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim sup</mo> <mrow> <mi>t</mi> <mo>&#8594;</mo> <mo>&#8734;</mo> </mrow> </munder> <mi>A</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&#8805;</mo> <mfrac> <mn>1</mn> <mi>e</mi> </mfrac> <mspace width="1.em"></mspace> <mrow> <mi>holds</mi> <mo>,</mo> </mrow> <mspace width="4.pt"></mspace> <mi>where</mi> <mspace width="1.em"></mspace> <mi>A</mi> <mo>:</mo> <mo>=</mo> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msubsup> <mo>&#8747;</mo> <mrow> <mi>t</mi> <mo>&#8722;</mo> <mi>&#964;</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>t</mi> </msubsup> <mi>p</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mspace width="0.166667em"></mspace> <mi>d</mi> <mi>s</mi> <mo>.</mo> </mrow> </semantics> </math> </disp-formula> Our main result shows that, if the function <i>A</i> is slowly varying at infinity (in additive form), then under mild additional assumptions on <i>p</i> and <inline-formula> <math display="inline"> <semantics> <mi>&#964;</mi> </semantics> </math> </inline-formula>, condition <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <mo>&gt;</mo> <mn>1</mn> <mo>/</mo> <mi>e</mi> </mrow> </semantics> </math> </inline-formula> implies that all solutions of the above delay differential equation are oscillatory.https://www.mdpi.com/2073-8994/11/11/1332oscillationdelay differential equationvariable delaydeviating argumentnon-monotone argumentslowly varying function
collection DOAJ
language English
format Article
sources DOAJ
author Ábel Garab
spellingShingle Ábel Garab
A Sharp Oscillation Criterion for a Linear Differential Equation with Variable Delay
Symmetry
oscillation
delay differential equation
variable delay
deviating argument
non-monotone argument
slowly varying function
author_facet Ábel Garab
author_sort Ábel Garab
title A Sharp Oscillation Criterion for a Linear Differential Equation with Variable Delay
title_short A Sharp Oscillation Criterion for a Linear Differential Equation with Variable Delay
title_full A Sharp Oscillation Criterion for a Linear Differential Equation with Variable Delay
title_fullStr A Sharp Oscillation Criterion for a Linear Differential Equation with Variable Delay
title_full_unstemmed A Sharp Oscillation Criterion for a Linear Differential Equation with Variable Delay
title_sort sharp oscillation criterion for a linear differential equation with variable delay
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2019-10-01
description We consider linear differential equations with variable delay of the form <disp-formula> <math display="block"> <semantics> <mrow> <msup> <mi>x</mi> <mo>&#8242;</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>&#8722;</mo> <mi>&#964;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mo>=</mo> <mn>0</mn> </mrow> <mo>,</mo> <mspace width="2.em"></mspace> <mi>t</mi> <mo>&#8805;</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> </mrow> </semantics> </math> </disp-formula> where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo lspace="0pt">:</mo> <mrow> <mo>[</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mo>&#8734;</mo> <mo>)</mo> </mrow> <mo>&#8594;</mo> <mrow> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mo>&#8734;</mo> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#964;</mi> <mo lspace="0pt">:</mo> <mrow> <mo>[</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mo>&#8734;</mo> <mo>)</mo> </mrow> <mo>&#8594;</mo> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mo>&#8734;</mo> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> are continuous functions, such that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>&#8722;</mo> <mi>&#964;</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>&#8594;</mo> <mo>&#8734;</mo> </mrow> </semantics> </math> </inline-formula> (as <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>&#8594;</mo> <mo>&#8734;</mo> </mrow> </semantics> </math> </inline-formula>). It is well-known that, for the oscillation of all solutions, it is necessary that <disp-formula> <math display="block"> <semantics> <mrow> <mi>B</mi> <mo>:</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim sup</mo> <mrow> <mi>t</mi> <mo>&#8594;</mo> <mo>&#8734;</mo> </mrow> </munder> <mi>A</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&#8805;</mo> <mfrac> <mn>1</mn> <mi>e</mi> </mfrac> <mspace width="1.em"></mspace> <mrow> <mi>holds</mi> <mo>,</mo> </mrow> <mspace width="4.pt"></mspace> <mi>where</mi> <mspace width="1.em"></mspace> <mi>A</mi> <mo>:</mo> <mo>=</mo> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msubsup> <mo>&#8747;</mo> <mrow> <mi>t</mi> <mo>&#8722;</mo> <mi>&#964;</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>t</mi> </msubsup> <mi>p</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mspace width="0.166667em"></mspace> <mi>d</mi> <mi>s</mi> <mo>.</mo> </mrow> </semantics> </math> </disp-formula> Our main result shows that, if the function <i>A</i> is slowly varying at infinity (in additive form), then under mild additional assumptions on <i>p</i> and <inline-formula> <math display="inline"> <semantics> <mi>&#964;</mi> </semantics> </math> </inline-formula>, condition <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <mo>&gt;</mo> <mn>1</mn> <mo>/</mo> <mi>e</mi> </mrow> </semantics> </math> </inline-formula> implies that all solutions of the above delay differential equation are oscillatory.
topic oscillation
delay differential equation
variable delay
deviating argument
non-monotone argument
slowly varying function
url https://www.mdpi.com/2073-8994/11/11/1332
work_keys_str_mv AT abelgarab asharposcillationcriterionforalineardifferentialequationwithvariabledelay
AT abelgarab sharposcillationcriterionforalineardifferentialequationwithvariabledelay
_version_ 1725070500121542656