Differential chemokine expression under the control of peripheral blood mononuclear cells issued from Alzheimer's patients in a human blood brain barrier model.

Growing evidence highlights the peripheral blood mononuclear cells (PBMCs) role and the chemokine involvement in the Alzheimer's disease (AD) physiopathology. However, few data are available about the impact of AD PBMCs in the chemokine signature in a brain with AD phenotype. Therefore, this st...

Full description

Bibliographic Details
Main Authors: Julie Vérité, Guylène Page, Marc Paccalin, Adrien Julian, Thierry Janet
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2018-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC6084889?pdf=render
Description
Summary:Growing evidence highlights the peripheral blood mononuclear cells (PBMCs) role and the chemokine involvement in the Alzheimer's disease (AD) physiopathology. However, few data are available about the impact of AD PBMCs in the chemokine signature in a brain with AD phenotype. Therefore, this study analyzed the chemokine levels in a human blood brain barrier model. A human endothelial cell line from the immortalized cerebral microvascular endothelial cell line (hCMEC/D3) and a human glioblastoma U-87 MG cell line, both with no AD phenotype were used while PBMCs came from AD at mild or moderate stage and control patients. PBMCs from moderate AD patients decreased CCL2 and CCL5 levels in endothelial, and also CXCL10 in abluminal compartments and in PBMCs compared to PBMCs from mild AD patients. The CX3CL1 expression increased in endothelial and abluminal compartments with PBMCs from mild AD patients compared to controls. AD PBMCs can convert the chemokine signature towards that found in AD brain, targeting some chemokines as new biomarkers in AD.
ISSN:1932-6203