Transcriptome analysis of Callery pear (Pyrus calleryana) reveals a comprehensive signalling network in response to Alternaria alternata.

The pear is an important temperate fruit worldwide that is produced by a group of species in the genus Pyrus. Callery pear (Pyrus calleryana Decne) is characterized by high resistance to multiple diseases, good adaptability, and high ornamental value, and is therefore widely planted in pear orchards...

Full description

Bibliographic Details
Main Authors: Jialiang Kan, Tingli Liu, Na Ma, Hui Li, Xiaogang Li, Jinyan Wang, Baolong Zhang, Youhong Chang, Jing Lin
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2017-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC5608294?pdf=render
id doaj-0d256c6e63824279852a99e9721ee186
record_format Article
spelling doaj-0d256c6e63824279852a99e9721ee1862020-11-25T02:41:25ZengPublic Library of Science (PLoS)PLoS ONE1932-62032017-01-01129e018498810.1371/journal.pone.0184988Transcriptome analysis of Callery pear (Pyrus calleryana) reveals a comprehensive signalling network in response to Alternaria alternata.Jialiang KanTingli LiuNa MaHui LiXiaogang LiJinyan WangBaolong ZhangYouhong ChangJing LinThe pear is an important temperate fruit worldwide that is produced by a group of species in the genus Pyrus. Callery pear (Pyrus calleryana Decne) is characterized by high resistance to multiple diseases, good adaptability, and high ornamental value, and is therefore widely planted in pear orchards for edible fruit production or as stock. Plant pathogens are a major threat to pear yield. Black spot disease, caused by the filamentous fungus Alternaria alternata, is one of the most serious diseases in pear. Elucidation of resistant genes to black spot disease is extremely important for understanding the underlying mechanisms as well as for the development of resistant cultivars. In this study, high-throughput single-strand RNA-sequencing was used to compare the transcriptome profiles of Callery pear leaves before and after A. alternata incubation for 7 days. The analysis yielded 73.3 Gb of clean data that were mapped onto the reference genome of the Chinese pear, and differentially expressed gene(DEG)s were identified with |log2FC| ≥ 1. Functional annotation demonstrated that black spot disease promoted great changes in the overall metabolism, and enrichment analysis of gene ontology terms showed that most of them are closely linked to signalling network and photosynthesis. Specifically, the genes included mainly transcription factors and genes involved in calcium signalling and ethylene and jasmonate pathways. Eight members of the ethylene response factor transcription factor gene family Group IX, including ERF1, ERF7, and ERF105, were up-regulated to 2.03-3.37-fold compared with CK, suggesting their role in the defence response to pathogen infection. Additionally, multiple transcription factors involved in biotic stresses, such as NAC78, NAC2, MYB44, and bHLH28, were up-regulated. Furthermore, we identified 144 long non-coding (lnc)RNAs, providing new insight into the involvement of lncRNAs in the response to black spot disease. Our study provides valuable data on the molecular genetics and functional genomic mechanisms of resistance to black spot disease in Callery pear. A good understanding of the molecular response to this disease will allow the development of durable and environmentally friendly control strategies.http://europepmc.org/articles/PMC5608294?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Jialiang Kan
Tingli Liu
Na Ma
Hui Li
Xiaogang Li
Jinyan Wang
Baolong Zhang
Youhong Chang
Jing Lin
spellingShingle Jialiang Kan
Tingli Liu
Na Ma
Hui Li
Xiaogang Li
Jinyan Wang
Baolong Zhang
Youhong Chang
Jing Lin
Transcriptome analysis of Callery pear (Pyrus calleryana) reveals a comprehensive signalling network in response to Alternaria alternata.
PLoS ONE
author_facet Jialiang Kan
Tingli Liu
Na Ma
Hui Li
Xiaogang Li
Jinyan Wang
Baolong Zhang
Youhong Chang
Jing Lin
author_sort Jialiang Kan
title Transcriptome analysis of Callery pear (Pyrus calleryana) reveals a comprehensive signalling network in response to Alternaria alternata.
title_short Transcriptome analysis of Callery pear (Pyrus calleryana) reveals a comprehensive signalling network in response to Alternaria alternata.
title_full Transcriptome analysis of Callery pear (Pyrus calleryana) reveals a comprehensive signalling network in response to Alternaria alternata.
title_fullStr Transcriptome analysis of Callery pear (Pyrus calleryana) reveals a comprehensive signalling network in response to Alternaria alternata.
title_full_unstemmed Transcriptome analysis of Callery pear (Pyrus calleryana) reveals a comprehensive signalling network in response to Alternaria alternata.
title_sort transcriptome analysis of callery pear (pyrus calleryana) reveals a comprehensive signalling network in response to alternaria alternata.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2017-01-01
description The pear is an important temperate fruit worldwide that is produced by a group of species in the genus Pyrus. Callery pear (Pyrus calleryana Decne) is characterized by high resistance to multiple diseases, good adaptability, and high ornamental value, and is therefore widely planted in pear orchards for edible fruit production or as stock. Plant pathogens are a major threat to pear yield. Black spot disease, caused by the filamentous fungus Alternaria alternata, is one of the most serious diseases in pear. Elucidation of resistant genes to black spot disease is extremely important for understanding the underlying mechanisms as well as for the development of resistant cultivars. In this study, high-throughput single-strand RNA-sequencing was used to compare the transcriptome profiles of Callery pear leaves before and after A. alternata incubation for 7 days. The analysis yielded 73.3 Gb of clean data that were mapped onto the reference genome of the Chinese pear, and differentially expressed gene(DEG)s were identified with |log2FC| ≥ 1. Functional annotation demonstrated that black spot disease promoted great changes in the overall metabolism, and enrichment analysis of gene ontology terms showed that most of them are closely linked to signalling network and photosynthesis. Specifically, the genes included mainly transcription factors and genes involved in calcium signalling and ethylene and jasmonate pathways. Eight members of the ethylene response factor transcription factor gene family Group IX, including ERF1, ERF7, and ERF105, were up-regulated to 2.03-3.37-fold compared with CK, suggesting their role in the defence response to pathogen infection. Additionally, multiple transcription factors involved in biotic stresses, such as NAC78, NAC2, MYB44, and bHLH28, were up-regulated. Furthermore, we identified 144 long non-coding (lnc)RNAs, providing new insight into the involvement of lncRNAs in the response to black spot disease. Our study provides valuable data on the molecular genetics and functional genomic mechanisms of resistance to black spot disease in Callery pear. A good understanding of the molecular response to this disease will allow the development of durable and environmentally friendly control strategies.
url http://europepmc.org/articles/PMC5608294?pdf=render
work_keys_str_mv AT jialiangkan transcriptomeanalysisofcallerypearpyruscalleryanarevealsacomprehensivesignallingnetworkinresponsetoalternariaalternata
AT tingliliu transcriptomeanalysisofcallerypearpyruscalleryanarevealsacomprehensivesignallingnetworkinresponsetoalternariaalternata
AT nama transcriptomeanalysisofcallerypearpyruscalleryanarevealsacomprehensivesignallingnetworkinresponsetoalternariaalternata
AT huili transcriptomeanalysisofcallerypearpyruscalleryanarevealsacomprehensivesignallingnetworkinresponsetoalternariaalternata
AT xiaogangli transcriptomeanalysisofcallerypearpyruscalleryanarevealsacomprehensivesignallingnetworkinresponsetoalternariaalternata
AT jinyanwang transcriptomeanalysisofcallerypearpyruscalleryanarevealsacomprehensivesignallingnetworkinresponsetoalternariaalternata
AT baolongzhang transcriptomeanalysisofcallerypearpyruscalleryanarevealsacomprehensivesignallingnetworkinresponsetoalternariaalternata
AT youhongchang transcriptomeanalysisofcallerypearpyruscalleryanarevealsacomprehensivesignallingnetworkinresponsetoalternariaalternata
AT jinglin transcriptomeanalysisofcallerypearpyruscalleryanarevealsacomprehensivesignallingnetworkinresponsetoalternariaalternata
_version_ 1724778468287184896