A PSO-based multi-objective multi-label feature selection method in classification
Abstract Feature selection is an important data preprocessing technique in multi-label classification. Although a large number of studies have been proposed to tackle feature selection problem, there are a few cases for multi-label data. This paper studies a multi-label feature selection algorithm u...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2017-03-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-017-00416-0 |
id |
doaj-0d11cab47de64ebd87afaa63a71b6192 |
---|---|
record_format |
Article |
spelling |
doaj-0d11cab47de64ebd87afaa63a71b61922020-12-08T02:25:43ZengNature Publishing GroupScientific Reports2045-23222017-03-017111210.1038/s41598-017-00416-0A PSO-based multi-objective multi-label feature selection method in classificationYong Zhang0Dun-wei Gong1Xiao-yan Sun2Yi-nan Guo3School of Information and Electronic Engineering, China University of Mining and TechnologySchool of Information and Electronic Engineering, China University of Mining and TechnologySchool of Information and Electronic Engineering, China University of Mining and TechnologySchool of Information and Electronic Engineering, China University of Mining and TechnologyAbstract Feature selection is an important data preprocessing technique in multi-label classification. Although a large number of studies have been proposed to tackle feature selection problem, there are a few cases for multi-label data. This paper studies a multi-label feature selection algorithm using an improved multi-objective particle swarm optimization (PSO), with the purpose of searching for a Pareto set of non-dominated solutions (feature subsets). Two new operators are employed to improve the performance of the proposed PSO-based algorithm. One operator is adaptive uniform mutation with action range varying over time, which is used to extend the exploration capability of the swarm; another is a local learning strategy, which is designed to exploit the areas with sparse solutions in the search space. Moreover, the idea of the archive, and the crowding distance are applied to PSO for finding the Pareto set. Finally, experiments verify that the proposed algorithm is a useful approach of feature selection for multi-label classification problem.https://doi.org/10.1038/s41598-017-00416-0 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yong Zhang Dun-wei Gong Xiao-yan Sun Yi-nan Guo |
spellingShingle |
Yong Zhang Dun-wei Gong Xiao-yan Sun Yi-nan Guo A PSO-based multi-objective multi-label feature selection method in classification Scientific Reports |
author_facet |
Yong Zhang Dun-wei Gong Xiao-yan Sun Yi-nan Guo |
author_sort |
Yong Zhang |
title |
A PSO-based multi-objective multi-label feature selection method in classification |
title_short |
A PSO-based multi-objective multi-label feature selection method in classification |
title_full |
A PSO-based multi-objective multi-label feature selection method in classification |
title_fullStr |
A PSO-based multi-objective multi-label feature selection method in classification |
title_full_unstemmed |
A PSO-based multi-objective multi-label feature selection method in classification |
title_sort |
pso-based multi-objective multi-label feature selection method in classification |
publisher |
Nature Publishing Group |
series |
Scientific Reports |
issn |
2045-2322 |
publishDate |
2017-03-01 |
description |
Abstract Feature selection is an important data preprocessing technique in multi-label classification. Although a large number of studies have been proposed to tackle feature selection problem, there are a few cases for multi-label data. This paper studies a multi-label feature selection algorithm using an improved multi-objective particle swarm optimization (PSO), with the purpose of searching for a Pareto set of non-dominated solutions (feature subsets). Two new operators are employed to improve the performance of the proposed PSO-based algorithm. One operator is adaptive uniform mutation with action range varying over time, which is used to extend the exploration capability of the swarm; another is a local learning strategy, which is designed to exploit the areas with sparse solutions in the search space. Moreover, the idea of the archive, and the crowding distance are applied to PSO for finding the Pareto set. Finally, experiments verify that the proposed algorithm is a useful approach of feature selection for multi-label classification problem. |
url |
https://doi.org/10.1038/s41598-017-00416-0 |
work_keys_str_mv |
AT yongzhang apsobasedmultiobjectivemultilabelfeatureselectionmethodinclassification AT dunweigong apsobasedmultiobjectivemultilabelfeatureselectionmethodinclassification AT xiaoyansun apsobasedmultiobjectivemultilabelfeatureselectionmethodinclassification AT yinanguo apsobasedmultiobjectivemultilabelfeatureselectionmethodinclassification AT yongzhang psobasedmultiobjectivemultilabelfeatureselectionmethodinclassification AT dunweigong psobasedmultiobjectivemultilabelfeatureselectionmethodinclassification AT xiaoyansun psobasedmultiobjectivemultilabelfeatureselectionmethodinclassification AT yinanguo psobasedmultiobjectivemultilabelfeatureselectionmethodinclassification |
_version_ |
1724393681769725952 |