Mine safety assessment using gray relational analysis and bow tie model.

Mine safety assessment is a precondition for ensuring orderly and safety in production. The main purpose of this study was to prevent mine accidents more effectively by proposing a composite risk analysis model. First, the weights of the assessment indicators were determined by the revised integrate...

Full description

Bibliographic Details
Main Authors: Qingwei Xu, Kaili Xu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2018-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC5862416?pdf=render
Description
Summary:Mine safety assessment is a precondition for ensuring orderly and safety in production. The main purpose of this study was to prevent mine accidents more effectively by proposing a composite risk analysis model. First, the weights of the assessment indicators were determined by the revised integrated weight method, in which the objective weights were determined by a variation coefficient method and the subjective weights determined by the Delphi method. A new formula was then adopted to calculate the integrated weights based on the subjective and objective weights. Second, after the assessment indicator weights were determined, gray relational analysis was used to evaluate the safety of mine enterprises. Mine enterprise safety was ranked according to the gray relational degree, and weak links of mine safety practices identified based on gray relational analysis. Third, to validate the revised integrated weight method adopted in the process of gray relational analysis, the fuzzy evaluation method was used to the safety assessment of mine enterprises. Fourth, for first time, bow tie model was adopted to identify the causes and consequences of weak links and allow corresponding safety measures to be taken to guarantee the mine's safe production. A case study of mine safety assessment was presented to demonstrate the effectiveness and rationality of the proposed composite risk analysis model, which can be applied to other related industries for safety evaluation.
ISSN:1932-6203