Gradient Iterative Method with Optimal Convergent Factor for Solving a Generalized Sylvester Matrix Equation with Applications to Diffusion Equations

We introduce a gradient iterative scheme with an optimal convergent factor for solving a generalized Sylvester matrix equation <inline-formula><math display="inline"><semantics><mrow><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=&...

Full description

Bibliographic Details
Main Authors: Nunthakarn Boonruangkan, Pattrawut Chansangiam
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/10/1732
id doaj-0cf74271221844b7b9f35fd9cd372326
record_format Article
spelling doaj-0cf74271221844b7b9f35fd9cd3723262020-11-25T03:03:53ZengMDPI AGSymmetry2073-89942020-10-01121732173210.3390/sym12101732Gradient Iterative Method with Optimal Convergent Factor for Solving a Generalized Sylvester Matrix Equation with Applications to Diffusion EquationsNunthakarn Boonruangkan0Pattrawut Chansangiam1Department of Mathematics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, ThailandDepartment of Mathematics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, ThailandWe introduce a gradient iterative scheme with an optimal convergent factor for solving a generalized Sylvester matrix equation <inline-formula><math display="inline"><semantics><mrow><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>p</mi></msubsup><msub><mi>A</mi><mi>i</mi></msub><mi>X</mi><msub><mi>B</mi><mi>i</mi></msub><mo>=</mo><mi>F</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math display="inline"><semantics><mrow><msub><mi>A</mi><mi>i</mi></msub><mo>,</mo><msub><mi>B</mi><mi>i</mi></msub></mrow></semantics></math></inline-formula> and <i>F</i> are conformable rectangular matrices. The iterative scheme is derived from the gradients of the squared norm-errors of the associated subsystems for the equation. The convergence analysis reveals that the sequence of approximated solutions converge to the exact solution for any initial value if and only if the convergent factor is chosen properly in terms of the spectral radius of the associated iteration matrix. We also discuss the convergent rate and error estimations. Moreover, we determine the fastest convergent factor so that the associated iteration matrix has the smallest spectral radius. Furthermore, we provide numerical examples to illustrate the capability and efficiency of this method. Finally, we apply the proposed scheme to discretized equations for boundary value problems involving convection and diffusion.https://www.mdpi.com/2073-8994/12/10/1732gradientlinear iterative processmatrix normgeneralized Sylvester matrix equationconvection–diffusion equation
collection DOAJ
language English
format Article
sources DOAJ
author Nunthakarn Boonruangkan
Pattrawut Chansangiam
spellingShingle Nunthakarn Boonruangkan
Pattrawut Chansangiam
Gradient Iterative Method with Optimal Convergent Factor for Solving a Generalized Sylvester Matrix Equation with Applications to Diffusion Equations
Symmetry
gradient
linear iterative process
matrix norm
generalized Sylvester matrix equation
convection–diffusion equation
author_facet Nunthakarn Boonruangkan
Pattrawut Chansangiam
author_sort Nunthakarn Boonruangkan
title Gradient Iterative Method with Optimal Convergent Factor for Solving a Generalized Sylvester Matrix Equation with Applications to Diffusion Equations
title_short Gradient Iterative Method with Optimal Convergent Factor for Solving a Generalized Sylvester Matrix Equation with Applications to Diffusion Equations
title_full Gradient Iterative Method with Optimal Convergent Factor for Solving a Generalized Sylvester Matrix Equation with Applications to Diffusion Equations
title_fullStr Gradient Iterative Method with Optimal Convergent Factor for Solving a Generalized Sylvester Matrix Equation with Applications to Diffusion Equations
title_full_unstemmed Gradient Iterative Method with Optimal Convergent Factor for Solving a Generalized Sylvester Matrix Equation with Applications to Diffusion Equations
title_sort gradient iterative method with optimal convergent factor for solving a generalized sylvester matrix equation with applications to diffusion equations
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2020-10-01
description We introduce a gradient iterative scheme with an optimal convergent factor for solving a generalized Sylvester matrix equation <inline-formula><math display="inline"><semantics><mrow><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>p</mi></msubsup><msub><mi>A</mi><mi>i</mi></msub><mi>X</mi><msub><mi>B</mi><mi>i</mi></msub><mo>=</mo><mi>F</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math display="inline"><semantics><mrow><msub><mi>A</mi><mi>i</mi></msub><mo>,</mo><msub><mi>B</mi><mi>i</mi></msub></mrow></semantics></math></inline-formula> and <i>F</i> are conformable rectangular matrices. The iterative scheme is derived from the gradients of the squared norm-errors of the associated subsystems for the equation. The convergence analysis reveals that the sequence of approximated solutions converge to the exact solution for any initial value if and only if the convergent factor is chosen properly in terms of the spectral radius of the associated iteration matrix. We also discuss the convergent rate and error estimations. Moreover, we determine the fastest convergent factor so that the associated iteration matrix has the smallest spectral radius. Furthermore, we provide numerical examples to illustrate the capability and efficiency of this method. Finally, we apply the proposed scheme to discretized equations for boundary value problems involving convection and diffusion.
topic gradient
linear iterative process
matrix norm
generalized Sylvester matrix equation
convection–diffusion equation
url https://www.mdpi.com/2073-8994/12/10/1732
work_keys_str_mv AT nunthakarnboonruangkan gradientiterativemethodwithoptimalconvergentfactorforsolvingageneralizedsylvestermatrixequationwithapplicationstodiffusionequations
AT pattrawutchansangiam gradientiterativemethodwithoptimalconvergentfactorforsolvingageneralizedsylvestermatrixequationwithapplicationstodiffusionequations
_version_ 1724684046366146560