Gradient Iterative Method with Optimal Convergent Factor for Solving a Generalized Sylvester Matrix Equation with Applications to Diffusion Equations
We introduce a gradient iterative scheme with an optimal convergent factor for solving a generalized Sylvester matrix equation <inline-formula><math display="inline"><semantics><mrow><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=&...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-10-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/12/10/1732 |
id |
doaj-0cf74271221844b7b9f35fd9cd372326 |
---|---|
record_format |
Article |
spelling |
doaj-0cf74271221844b7b9f35fd9cd3723262020-11-25T03:03:53ZengMDPI AGSymmetry2073-89942020-10-01121732173210.3390/sym12101732Gradient Iterative Method with Optimal Convergent Factor for Solving a Generalized Sylvester Matrix Equation with Applications to Diffusion EquationsNunthakarn Boonruangkan0Pattrawut Chansangiam1Department of Mathematics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, ThailandDepartment of Mathematics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, ThailandWe introduce a gradient iterative scheme with an optimal convergent factor for solving a generalized Sylvester matrix equation <inline-formula><math display="inline"><semantics><mrow><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>p</mi></msubsup><msub><mi>A</mi><mi>i</mi></msub><mi>X</mi><msub><mi>B</mi><mi>i</mi></msub><mo>=</mo><mi>F</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math display="inline"><semantics><mrow><msub><mi>A</mi><mi>i</mi></msub><mo>,</mo><msub><mi>B</mi><mi>i</mi></msub></mrow></semantics></math></inline-formula> and <i>F</i> are conformable rectangular matrices. The iterative scheme is derived from the gradients of the squared norm-errors of the associated subsystems for the equation. The convergence analysis reveals that the sequence of approximated solutions converge to the exact solution for any initial value if and only if the convergent factor is chosen properly in terms of the spectral radius of the associated iteration matrix. We also discuss the convergent rate and error estimations. Moreover, we determine the fastest convergent factor so that the associated iteration matrix has the smallest spectral radius. Furthermore, we provide numerical examples to illustrate the capability and efficiency of this method. Finally, we apply the proposed scheme to discretized equations for boundary value problems involving convection and diffusion.https://www.mdpi.com/2073-8994/12/10/1732gradientlinear iterative processmatrix normgeneralized Sylvester matrix equationconvection–diffusion equation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Nunthakarn Boonruangkan Pattrawut Chansangiam |
spellingShingle |
Nunthakarn Boonruangkan Pattrawut Chansangiam Gradient Iterative Method with Optimal Convergent Factor for Solving a Generalized Sylvester Matrix Equation with Applications to Diffusion Equations Symmetry gradient linear iterative process matrix norm generalized Sylvester matrix equation convection–diffusion equation |
author_facet |
Nunthakarn Boonruangkan Pattrawut Chansangiam |
author_sort |
Nunthakarn Boonruangkan |
title |
Gradient Iterative Method with Optimal Convergent Factor for Solving a Generalized Sylvester Matrix Equation with Applications to Diffusion Equations |
title_short |
Gradient Iterative Method with Optimal Convergent Factor for Solving a Generalized Sylvester Matrix Equation with Applications to Diffusion Equations |
title_full |
Gradient Iterative Method with Optimal Convergent Factor for Solving a Generalized Sylvester Matrix Equation with Applications to Diffusion Equations |
title_fullStr |
Gradient Iterative Method with Optimal Convergent Factor for Solving a Generalized Sylvester Matrix Equation with Applications to Diffusion Equations |
title_full_unstemmed |
Gradient Iterative Method with Optimal Convergent Factor for Solving a Generalized Sylvester Matrix Equation with Applications to Diffusion Equations |
title_sort |
gradient iterative method with optimal convergent factor for solving a generalized sylvester matrix equation with applications to diffusion equations |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2020-10-01 |
description |
We introduce a gradient iterative scheme with an optimal convergent factor for solving a generalized Sylvester matrix equation <inline-formula><math display="inline"><semantics><mrow><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>p</mi></msubsup><msub><mi>A</mi><mi>i</mi></msub><mi>X</mi><msub><mi>B</mi><mi>i</mi></msub><mo>=</mo><mi>F</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math display="inline"><semantics><mrow><msub><mi>A</mi><mi>i</mi></msub><mo>,</mo><msub><mi>B</mi><mi>i</mi></msub></mrow></semantics></math></inline-formula> and <i>F</i> are conformable rectangular matrices. The iterative scheme is derived from the gradients of the squared norm-errors of the associated subsystems for the equation. The convergence analysis reveals that the sequence of approximated solutions converge to the exact solution for any initial value if and only if the convergent factor is chosen properly in terms of the spectral radius of the associated iteration matrix. We also discuss the convergent rate and error estimations. Moreover, we determine the fastest convergent factor so that the associated iteration matrix has the smallest spectral radius. Furthermore, we provide numerical examples to illustrate the capability and efficiency of this method. Finally, we apply the proposed scheme to discretized equations for boundary value problems involving convection and diffusion. |
topic |
gradient linear iterative process matrix norm generalized Sylvester matrix equation convection–diffusion equation |
url |
https://www.mdpi.com/2073-8994/12/10/1732 |
work_keys_str_mv |
AT nunthakarnboonruangkan gradientiterativemethodwithoptimalconvergentfactorforsolvingageneralizedsylvestermatrixequationwithapplicationstodiffusionequations AT pattrawutchansangiam gradientiterativemethodwithoptimalconvergentfactorforsolvingageneralizedsylvestermatrixequationwithapplicationstodiffusionequations |
_version_ |
1724684046366146560 |