Mapping wetland loss and restoration potential in Flanders (Belgium): an ecosystem service perspective

With the case of Flanders (northern part of Belgium) we present an integrated approach to calculate accurate losses of wetlands, potentials for restoration, and their ecosystem services supplies and illustrate how these insights can be used to evaluate and support policy making. Flanders lost about...

Full description

Bibliographic Details
Main Authors: Kris Decleer, Jan Wouters, Sander Jacobs, Jan Staes, Toon Spanhove, Patrick Meire, Rudy van Diggelen
Format: Article
Language:English
Published: Resilience Alliance 2016-12-01
Series:Ecology and Society
Subjects:
Online Access:http://www.ecologyandsociety.org/vol21/iss4/art46/
Description
Summary:With the case of Flanders (northern part of Belgium) we present an integrated approach to calculate accurate losses of wetlands, potentials for restoration, and their ecosystem services supplies and illustrate how these insights can be used to evaluate and support policy making. Flanders lost about 75% of its wetland habitats in the past 50-60 years, with currently only 68,000 ha remaining, often in a more or less degraded state. For five different wetland categories (excluding open waters) we calculated that restoration of lost wetland is still possible for an additional total area of about 147,000 ha, assuming that, with time and appropriate measures and techniques, the necessary biophysical and ecological conditions can more or less be restored or created. Wetland restoration opportunities were mapped according to an open and forested landscape scenario. Despite the fact that for 49,000 ha wetland restoration is justifiable by the actual presence of an appropriate spatial planning and/or protection status, the official Flemish nature policy only foresees 7,400 to 10,600 ha of additional wetland (open waters excluded) by 2050. The benefits of a more ambitious wetland restoration action program are underpinned by an explorative and quantified analysis of ecosystem service supply for each of the two scenarios, showing that the strongly increased supply of several important regulating and cultural ecosystem services might outweigh the decrease of food production, especially if extensive farming on temporary wet soils remains possible. Finally, we discuss the challenges of wetland restoration policies for biodiversity conservation and climate change.
ISSN:1708-3087