Maximizing the Field Emission Performance of Graphene Arrays

To design efficient and powerful field emission cathodes, the screening effect is of great importance and should be traded off between screening and emitter number. It has long been found that to achieve maximum emission efficiency in an array, neighboring emitters are at two or three times their he...

Full description

Bibliographic Details
Main Authors: Kaiqiang Yang, Jianlong Liu, Ruirui Jiang, Yubing Gong, Baoqing Zeng, Jianjun Yang, Feng Chi, Liming Liu
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/10/10/2003
Description
Summary:To design efficient and powerful field emission cathodes, the screening effect is of great importance and should be traded off between screening and emitter number. It has long been found that to achieve maximum emission efficiency in an array, neighboring emitters are at two or three times their height from each other. However, this is only true for one-dimensional emitters, such as carbon nanotubes, but for graphene, a two-dimensional material, it is different. In this work, we found that to achieve maximum emission efficiency in an array of graphene, the separation of the emitter is four times the height, and it is insensitive to the anode voltage and the distance between the cathode and the anode.
ISSN:2079-4991