Blind Cartography for Side Channel Attacks: Cross-Correlation Cartography

Side channel and fault injection attacks are major threats to cryptographic applications of embedded systems. Best performances for these attacks are achieved by focusing sensors or injectors on the sensible parts of the application, by means of dedicated methods to localise them. Few methods have b...

Full description

Bibliographic Details
Main Authors: Laurent Sauvage, Sylvain Guilley, Florent Flament, Jean-Luc Danger, Yves Mathieu
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:International Journal of Reconfigurable Computing
Online Access:http://dx.doi.org/10.1155/2012/360242
Description
Summary:Side channel and fault injection attacks are major threats to cryptographic applications of embedded systems. Best performances for these attacks are achieved by focusing sensors or injectors on the sensible parts of the application, by means of dedicated methods to localise them. Few methods have been proposed in the past, and all of them aim at pinpointing the cryptoprocessor. However it could be interesting to exploit the activity of other parts of the application, in order to increase the attack's efficiency or to bypass its countermeasures. In this paper, we present a localisation method based on cross-correlation, which issues a list of areas of interest within the attacked device. It realizes an exhaustive analysis, since it may localise any module of the device, and not only those which perform cryptographic operations. Moreover, it also does not require a preliminary knowledge about the implementation, whereas some previous cartography methods require that the attacker could choose the cryptoprocessor inputs, which is not always possible. The method is experimentally validated using observations of the electromagnetic near field distribution over a Xilinx Virtex 5 FPGA. The matching between areas of interest and the application layout in the FPGA floorplan is confirmed by correlation analysis.
ISSN:1687-7195
1687-7209