DR2S: an integrated algorithm providing reference-grade haplotype sequences from heterozygous samples

Abstract Background High resolution HLA genotyping of donors and recipients is a crucially important prerequisite for haematopoetic stem-cell transplantation and relies heavily on the quality and completeness of immunogenetic reference sequence databases of allelic variation. Results Here, we report...

Full description

Bibliographic Details
Main Authors: Steffen Klasberg, Alexander H. Schmidt, Vinzenz Lange, Gerhard Schöfl
Format: Article
Language:English
Published: BMC 2021-05-01
Series:BMC Bioinformatics
Subjects:
HLA
KIR
Online Access:https://doi.org/10.1186/s12859-021-04153-0
Description
Summary:Abstract Background High resolution HLA genotyping of donors and recipients is a crucially important prerequisite for haematopoetic stem-cell transplantation and relies heavily on the quality and completeness of immunogenetic reference sequence databases of allelic variation. Results Here, we report on DR2S, an R package that leverages the strengths of two sequencing technologies—the accuracy of next-generation sequencing with the read length of third-generation sequencing technologies like PacBio’s SMRT sequencing or ONT’s nanopore sequencing—to reconstruct fully-phased high-quality full-length haplotype sequences. Although optimised for HLA and KIR genes, DR2S is applicable to all loci with known reference sequences provided that full-length sequencing data is available for analysis. In addition, DR2S integrates supporting tools for easy visualisation and quality control of the reconstructed haplotype to ensure suitability for submission to public allele databases. Conclusions DR2S is a largely automated workflow designed to create high-quality fully-phased reference allele sequences for highly polymorphic gene regions such as HLA or KIR. It has been used by biologists to successfully characterise and submit more than 500 HLA alleles and more than 500 KIR alleles to the IPD-IMGT/HLA and IPD-KIR databases.
ISSN:1471-2105