Entropic Analysis of the Quantum Oscillator with a Minimal Length
The well-known Heisenberg−Robertson uncertainty relation for a pair of noncommuting observables, is expressed in terms of the product of variances and the commutator among the operators, computed for the quantum state of a system. Different modified commutation relations have been consider...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-11-01
|
Series: | Proceedings |
Subjects: | |
Online Access: | https://www.mdpi.com/2504-3900/12/1/57 |
id |
doaj-0c9c5e1b7a3a468ea11341f24617ed2c |
---|---|
record_format |
Article |
spelling |
doaj-0c9c5e1b7a3a468ea11341f24617ed2c2020-11-25T01:10:56ZengMDPI AGProceedings2504-39002019-11-011215710.3390/proceedings2019012057proceedings2019012057Entropic Analysis of the Quantum Oscillator with a Minimal LengthDavid Puertas-Centeno0Mariela Portesi1Departamento de Matemática Aplicada, Universidad Rey Juan Carlos, 28933 Madrid, SpainInstituto de Física La Plata (IFLP), CONICET, La Plata 1900, ArgentinaThe well-known Heisenberg−Robertson uncertainty relation for a pair of noncommuting observables, is expressed in terms of the product of variances and the commutator among the operators, computed for the quantum state of a system. Different modified commutation relations have been considered in the last years with the purpose of taking into account the effect of quantum gravity. Indeed it can be seen that letting <inline-formula> <math display="inline"> <semantics> <mrow> <mrow> <mo>[</mo> <mi>X</mi> <mo>,</mo> <mi>P</mi> <mo>]</mo> </mrow> <mo>=</mo> <mi>i</mi> <mi>ℏ</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>β</mi> <msup> <mi>P</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> implies the existence of a minimal length proportional to <inline-formula> <math display="inline"> <semantics> <msqrt> <mi>β</mi> </msqrt> </semantics> </math> </inline-formula>. The Bialynicki-Birula−Mycielski entropic uncertainty relation in terms of Shannon entropies is also seen to be deformed in the presence of a minimal length, corresponding to a strictly positive deformation parameter <inline-formula> <math display="inline"> <semantics> <mi>β</mi> </semantics> </math> </inline-formula>. Generalized entropies can be implemented. Indeed, results for the sum of position and (auxiliary) momentum Rényi entropies with conjugated indices have been provided recently for the ground and first excited state. We present numerical findings for conjugated pairs of entropic indices, for the lowest lying levels of the deformed harmonic oscillator system in 1D, taking into account the position distribution for the wavefunction and the actual momentum.https://www.mdpi.com/2504-3900/12/1/57uncertainty relationsinformation entropyquantum gravity |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
David Puertas-Centeno Mariela Portesi |
spellingShingle |
David Puertas-Centeno Mariela Portesi Entropic Analysis of the Quantum Oscillator with a Minimal Length Proceedings uncertainty relations information entropy quantum gravity |
author_facet |
David Puertas-Centeno Mariela Portesi |
author_sort |
David Puertas-Centeno |
title |
Entropic Analysis of the Quantum Oscillator with a Minimal Length |
title_short |
Entropic Analysis of the Quantum Oscillator with a Minimal Length |
title_full |
Entropic Analysis of the Quantum Oscillator with a Minimal Length |
title_fullStr |
Entropic Analysis of the Quantum Oscillator with a Minimal Length |
title_full_unstemmed |
Entropic Analysis of the Quantum Oscillator with a Minimal Length |
title_sort |
entropic analysis of the quantum oscillator with a minimal length |
publisher |
MDPI AG |
series |
Proceedings |
issn |
2504-3900 |
publishDate |
2019-11-01 |
description |
The well-known Heisenberg−Robertson uncertainty relation for a pair of noncommuting observables, is expressed in terms of the product of variances and the commutator among the operators, computed for the quantum state of a system. Different modified commutation relations have been considered in the last years with the purpose of taking into account the effect of quantum gravity. Indeed it can be seen that letting <inline-formula> <math display="inline"> <semantics> <mrow> <mrow> <mo>[</mo> <mi>X</mi> <mo>,</mo> <mi>P</mi> <mo>]</mo> </mrow> <mo>=</mo> <mi>i</mi> <mi>ℏ</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>β</mi> <msup> <mi>P</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> implies the existence of a minimal length proportional to <inline-formula> <math display="inline"> <semantics> <msqrt> <mi>β</mi> </msqrt> </semantics> </math> </inline-formula>. The Bialynicki-Birula−Mycielski entropic uncertainty relation in terms of Shannon entropies is also seen to be deformed in the presence of a minimal length, corresponding to a strictly positive deformation parameter <inline-formula> <math display="inline"> <semantics> <mi>β</mi> </semantics> </math> </inline-formula>. Generalized entropies can be implemented. Indeed, results for the sum of position and (auxiliary) momentum Rényi entropies with conjugated indices have been provided recently for the ground and first excited state. We present numerical findings for conjugated pairs of entropic indices, for the lowest lying levels of the deformed harmonic oscillator system in 1D, taking into account the position distribution for the wavefunction and the actual momentum. |
topic |
uncertainty relations information entropy quantum gravity |
url |
https://www.mdpi.com/2504-3900/12/1/57 |
work_keys_str_mv |
AT davidpuertascenteno entropicanalysisofthequantumoscillatorwithaminimallength AT marielaportesi entropicanalysisofthequantumoscillatorwithaminimallength |
_version_ |
1725173396501692416 |