Entropic Analysis of the Quantum Oscillator with a Minimal Length

The well-known Heisenberg−Robertson uncertainty relation for a pair of noncommuting observables, is expressed in terms of the product of variances and the commutator among the operators, computed for the quantum state of a system. Different modified commutation relations have been consider...

Full description

Bibliographic Details
Main Authors: David Puertas-Centeno, Mariela Portesi
Format: Article
Language:English
Published: MDPI AG 2019-11-01
Series:Proceedings
Subjects:
Online Access:https://www.mdpi.com/2504-3900/12/1/57
id doaj-0c9c5e1b7a3a468ea11341f24617ed2c
record_format Article
spelling doaj-0c9c5e1b7a3a468ea11341f24617ed2c2020-11-25T01:10:56ZengMDPI AGProceedings2504-39002019-11-011215710.3390/proceedings2019012057proceedings2019012057Entropic Analysis of the Quantum Oscillator with a Minimal LengthDavid Puertas-Centeno0Mariela Portesi1Departamento de Matemática Aplicada, Universidad Rey Juan Carlos, 28933 Madrid, SpainInstituto de Física La Plata (IFLP), CONICET, La Plata 1900, ArgentinaThe well-known Heisenberg&#8722;Robertson uncertainty relation for a pair of noncommuting observables, is expressed in terms of the product of variances and the commutator among the operators, computed for the quantum state of a system. Different modified commutation relations have been considered in the last years with the purpose of taking into account the effect of quantum gravity. Indeed it can be seen that letting <inline-formula> <math display="inline"> <semantics> <mrow> <mrow> <mo>[</mo> <mi>X</mi> <mo>,</mo> <mi>P</mi> <mo>]</mo> </mrow> <mo>=</mo> <mi>i</mi> <mi>ℏ</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>&#946;</mi> <msup> <mi>P</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> implies the existence of a minimal length proportional to <inline-formula> <math display="inline"> <semantics> <msqrt> <mi>&#946;</mi> </msqrt> </semantics> </math> </inline-formula>. The Bialynicki-Birula&#8722;Mycielski entropic uncertainty relation in terms of Shannon entropies is also seen to be deformed in the presence of a minimal length, corresponding to a strictly positive deformation parameter <inline-formula> <math display="inline"> <semantics> <mi>&#946;</mi> </semantics> </math> </inline-formula>. Generalized entropies can be implemented. Indeed, results for the sum of position and (auxiliary) momentum R&#233;nyi entropies with conjugated indices have been provided recently for the ground and first excited state. We present numerical findings for conjugated pairs of entropic indices, for the lowest lying levels of the deformed harmonic oscillator system in 1D, taking into account the position distribution for the wavefunction and the actual momentum.https://www.mdpi.com/2504-3900/12/1/57uncertainty relationsinformation entropyquantum gravity
collection DOAJ
language English
format Article
sources DOAJ
author David Puertas-Centeno
Mariela Portesi
spellingShingle David Puertas-Centeno
Mariela Portesi
Entropic Analysis of the Quantum Oscillator with a Minimal Length
Proceedings
uncertainty relations
information entropy
quantum gravity
author_facet David Puertas-Centeno
Mariela Portesi
author_sort David Puertas-Centeno
title Entropic Analysis of the Quantum Oscillator with a Minimal Length
title_short Entropic Analysis of the Quantum Oscillator with a Minimal Length
title_full Entropic Analysis of the Quantum Oscillator with a Minimal Length
title_fullStr Entropic Analysis of the Quantum Oscillator with a Minimal Length
title_full_unstemmed Entropic Analysis of the Quantum Oscillator with a Minimal Length
title_sort entropic analysis of the quantum oscillator with a minimal length
publisher MDPI AG
series Proceedings
issn 2504-3900
publishDate 2019-11-01
description The well-known Heisenberg&#8722;Robertson uncertainty relation for a pair of noncommuting observables, is expressed in terms of the product of variances and the commutator among the operators, computed for the quantum state of a system. Different modified commutation relations have been considered in the last years with the purpose of taking into account the effect of quantum gravity. Indeed it can be seen that letting <inline-formula> <math display="inline"> <semantics> <mrow> <mrow> <mo>[</mo> <mi>X</mi> <mo>,</mo> <mi>P</mi> <mo>]</mo> </mrow> <mo>=</mo> <mi>i</mi> <mi>ℏ</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>&#946;</mi> <msup> <mi>P</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> implies the existence of a minimal length proportional to <inline-formula> <math display="inline"> <semantics> <msqrt> <mi>&#946;</mi> </msqrt> </semantics> </math> </inline-formula>. The Bialynicki-Birula&#8722;Mycielski entropic uncertainty relation in terms of Shannon entropies is also seen to be deformed in the presence of a minimal length, corresponding to a strictly positive deformation parameter <inline-formula> <math display="inline"> <semantics> <mi>&#946;</mi> </semantics> </math> </inline-formula>. Generalized entropies can be implemented. Indeed, results for the sum of position and (auxiliary) momentum R&#233;nyi entropies with conjugated indices have been provided recently for the ground and first excited state. We present numerical findings for conjugated pairs of entropic indices, for the lowest lying levels of the deformed harmonic oscillator system in 1D, taking into account the position distribution for the wavefunction and the actual momentum.
topic uncertainty relations
information entropy
quantum gravity
url https://www.mdpi.com/2504-3900/12/1/57
work_keys_str_mv AT davidpuertascenteno entropicanalysisofthequantumoscillatorwithaminimallength
AT marielaportesi entropicanalysisofthequantumoscillatorwithaminimallength
_version_ 1725173396501692416