Effect of Light Intensities and Atmospheric Gas Conditions on Biohydrogen Production of Microalgae Isolated from Fisheries Wastewater
Recently, the fishery farming industry has been developed rapidly due to increasing demand and consumption as well as the depletion of wild fish resources. Production processes in the industry usually generate large amounts of wastewater containing high nutrients, posing a threat to downstream water...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Mahidol University
2017-06-01
|
Series: | Environment and Natural Resources Journal |
Subjects: | |
Online Access: | https://www.tci-thaijo.org/index.php/ennrj/article/download/88960/73613.pdf |
Summary: | Recently, the fishery farming industry has been developed rapidly due to increasing demand and consumption as well as the depletion of wild fish resources. Production processes in the industry usually generate large amounts of wastewater containing high nutrients, posing a threat to downstream water. However, phytoplankton removal techniques commonly used to counteract the threat, though appearing to have low efficiency, are timeconsuming and less sustainable. Microalgae are photosynthetic microorganisms that convert solar energy into hydrogen. Using the isolated algae from fish farms as a source of renewable energy production could be a promising choice for handling fisheries wastewater in a more efficient manner. However, hydrogen production processes from algae still need more studies as their efficiencies vary between algae species and growth factors. In this work, the efficiency of hydrogen production from Scenedesmus accuminatus and Arthrospira platensis harvested from fish farms under three different light intensity conditions and three atmospheric gas conditions was determined. The results showed that the best conditions for hydrogen production from both species included 24 h darkness and carbon dioxide addition. Under the atmospheric gas combination of 99% argon and 1% carbon dioxide, S. accuminatus could produce hydrogen gas as high as 0.572 mol H2/mgCh h within 12 h, while the highest hydrogen production (0.348 mol H2/mgCh h) obtained from A. platensis was found under the atmospheric gas mixture of 98% argon and 2% carbon dioxide. Interestingly, S. accuminatus appeared to produce more hydrogen than A. platensis under the same conditions. |
---|---|
ISSN: | 1686-5456 2408-2384 |