Automatic Surgical Instrument Recognition—A Case of Comparison Study between the Faster R-CNN, Mask R-CNN, and Single-Shot Multi-Box Detectors

In various studies, problems with surgical instruments in the operating room are usually one of the major causes of delays and errors. It would be of great help, in surgery, to quickly and automatically identify and keep count of the surgical instruments in the operating room using only video inform...

Full description

Bibliographic Details
Main Authors: Jiann-Der Lee, Jong-Chih Chien, Yu-Tsung Hsu, Chieh-Tsai Wu
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/17/8097
Description
Summary:In various studies, problems with surgical instruments in the operating room are usually one of the major causes of delays and errors. It would be of great help, in surgery, to quickly and automatically identify and keep count of the surgical instruments in the operating room using only video information. In this study, the recognition rate of fourteen surgical instruments is studied using the Faster R-CNN, Mask R-CNN, and Single Shot Multi-Box Detectors, which are three deep learning networks in recent studies that exhibited near real-time object detection and identification performance. In our experimental studies using screen captures of real surgery video clips for training and testing, this study found that that acceptable accuracy and speed tradeoffs can be achieved by the Mask R-CNN classifier, which exhibited an overall average precision of 98.94% for all the instruments.
ISSN:2076-3417