3b Yazıcı Sistemi Titreşimlerinin Ürünlerin Yüzey Pürüzlülüğüne Etkisinin İncelenmesi

Additive Manufacturing (AM), widely known as three-dimensional (3D) printing, is the process that a product is fabricated layer by layer in Cartesian coordinate system. Fused Deposition Modelling (FDM) is the most used AM process for functional rapid prototyping and products reduces the time and mat...

Full description

Bibliographic Details
Main Authors: Menderes KAM, Hamit SARUHAN, Ahmet İpekçi
Format: Article
Language:English
Published: Düzce University 2019-03-01
Series:Düzce Üniversitesi Bilim ve Teknoloji Dergisi
Subjects:
Online Access:https://dergipark.org.tr/tr/pub/dubited/issue/44006/441221?publisher=duzce
Description
Summary:Additive Manufacturing (AM), widely known as three-dimensional (3D) printing, is the process that a product is fabricated layer by layer in Cartesian coordinate system. Fused Deposition Modelling (FDM) is the most used AM process for functional rapid prototyping and products reduces the time and material involved in manufacturing. The purpose of this study is to investigate the effects of 3D printer system vibrations on the surface roughness of fabricated products. Polyethyletherphthalate Glycol (PET-G) is used as material for fabrication. Six different filling structures - Rectilinear, Grid, Triangular, Wiggle, Fast Honeycomb, and Full Honeycomb - were used and for each structure two different top - two and three - layers implemented. A total of 12 samples specimens were fabricated. The results showed that using Full Honeycomb filling structure with three top layers is more suitable for surface roughness compare to the others filling structure used. It can be concluded that the vibration of 3D printer system considering type of filling structure and number of top layers have a significant effect on surface quality of product.
ISSN:2148-2446