A new characterization of L2(p2)

For a positive integer n and a prime p, let np{n}_{p} denote the p-part of n. Let G be a group, cd(G)\text{cd}(G) the set of all irreducible character degrees of GG, ρ(G)\rho (G) the set of all prime divisors of integers in cd(G)\text{cd}(G), V(G)=pep(G)|p∈ρ(G)V(G)=\left\{{p}^{{e}_{p}(G)}|p\in \rho...

Full description

Bibliographic Details
Main Authors: Wang Zhongbi, Qin Chao, Lv Heng, Yan Yanxiong, Chen Guiyun
Format: Article
Language:English
Published: De Gruyter 2020-09-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2020-0048
id doaj-0c76b429ae4641d8a161c64136f185a7
record_format Article
spelling doaj-0c76b429ae4641d8a161c64136f185a72021-09-06T19:20:12ZengDe GruyterOpen Mathematics2391-54552020-09-0118190791510.1515/math-2020-0048math-2020-0048A new characterization of L2(p2)Wang Zhongbi0Qin Chao1Lv Heng2Yan Yanxiong3Chen Guiyun4School of Mathematics and Statistics, Southwest University, Beibei, Chongqing, 400715, ChinaSchool of Mathematics and Statistics, Southwest University, Beibei, Chongqing, 400715, ChinaSchool of Mathematics and Statistics, Southwest University, Beibei, Chongqing, 400715, ChinaSchool of Mathematics and Statistics, Southwest University, Beibei, Chongqing, 400715, ChinaSchool of Mathematics and Statistics, Southwest University, Beibei, Chongqing, 400715, ChinaFor a positive integer n and a prime p, let np{n}_{p} denote the p-part of n. Let G be a group, cd(G)\text{cd}(G) the set of all irreducible character degrees of GG, ρ(G)\rho (G) the set of all prime divisors of integers in cd(G)\text{cd}(G), V(G)=pep(G)|p∈ρ(G)V(G)=\left\{{p}^{{e}_{p}(G)}|p\in \rho (G)\right\}, where pep(G)=max{χ(1)p|χ∈Irr(G)}.{p}^{{e}_{p}(G)}=\hspace{.25em}\max \hspace{.25em}\{\chi {(1)}_{p}|\chi \in \text{Irr}(G)\}. In this article, it is proved that G≅L2(p2)G\cong {L}_{2}({p}^{2}) if and only if |G|=|L2(p2)||G|=|{L}_{2}({p}^{2})| and V(G)=V(L2(p2))V(G)=V({L}_{2}({p}^{2})).https://doi.org/10.1515/math-2020-0048irreducible charactersdegreemaximal p-partsimple groupcharacterization20d05, 20c15
collection DOAJ
language English
format Article
sources DOAJ
author Wang Zhongbi
Qin Chao
Lv Heng
Yan Yanxiong
Chen Guiyun
spellingShingle Wang Zhongbi
Qin Chao
Lv Heng
Yan Yanxiong
Chen Guiyun
A new characterization of L2(p2)
Open Mathematics
irreducible characters
degree
maximal p-part
simple group
characterization
20d05, 20c15
author_facet Wang Zhongbi
Qin Chao
Lv Heng
Yan Yanxiong
Chen Guiyun
author_sort Wang Zhongbi
title A new characterization of L2(p2)
title_short A new characterization of L2(p2)
title_full A new characterization of L2(p2)
title_fullStr A new characterization of L2(p2)
title_full_unstemmed A new characterization of L2(p2)
title_sort new characterization of l2(p2)
publisher De Gruyter
series Open Mathematics
issn 2391-5455
publishDate 2020-09-01
description For a positive integer n and a prime p, let np{n}_{p} denote the p-part of n. Let G be a group, cd(G)\text{cd}(G) the set of all irreducible character degrees of GG, ρ(G)\rho (G) the set of all prime divisors of integers in cd(G)\text{cd}(G), V(G)=pep(G)|p∈ρ(G)V(G)=\left\{{p}^{{e}_{p}(G)}|p\in \rho (G)\right\}, where pep(G)=max{χ(1)p|χ∈Irr(G)}.{p}^{{e}_{p}(G)}=\hspace{.25em}\max \hspace{.25em}\{\chi {(1)}_{p}|\chi \in \text{Irr}(G)\}. In this article, it is proved that G≅L2(p2)G\cong {L}_{2}({p}^{2}) if and only if |G|=|L2(p2)||G|=|{L}_{2}({p}^{2})| and V(G)=V(L2(p2))V(G)=V({L}_{2}({p}^{2})).
topic irreducible characters
degree
maximal p-part
simple group
characterization
20d05, 20c15
url https://doi.org/10.1515/math-2020-0048
work_keys_str_mv AT wangzhongbi anewcharacterizationofl2p2
AT qinchao anewcharacterizationofl2p2
AT lvheng anewcharacterizationofl2p2
AT yanyanxiong anewcharacterizationofl2p2
AT chenguiyun anewcharacterizationofl2p2
AT wangzhongbi newcharacterizationofl2p2
AT qinchao newcharacterizationofl2p2
AT lvheng newcharacterizationofl2p2
AT yanyanxiong newcharacterizationofl2p2
AT chenguiyun newcharacterizationofl2p2
_version_ 1717777029031526400