Simulation and Thermo-Energy Analysis of Building Types in the Dominican Republic to Evaluate and Introduce Energy Efficiency in the Envelope

The improvement of the energy performance in buildings is key for sustainable development, even more so in the case of the Dominican Republic (DR), which is committed to this goal but which has neither regulation nor specific social behavior in this field. The main goal of this work is double; on on...

Full description

Bibliographic Details
Main Authors: Joan Manuel Felix Benitez, Luis Alfonso del Portillo-Valdés, Victor José del Campo Díaz, Koldobika Martin Escudero
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/14/3731
Description
Summary:The improvement of the energy performance in buildings is key for sustainable development, even more so in the case of the Dominican Republic (DR), which is committed to this goal but which has neither regulation nor specific social behavior in this field. The main goal of this work is double; on one hand it is aimed at providing useable information for those who have the responsibly of making regulation norms and on the other, it is desirable to give an essential, technically proven and handy tool to those involved in the construction sector in improving the envelopes of buildings and to introduce good practices into the management of the energy systems of buildings. A case study of eight administrative buildings located in different climatic zones of the DR was carried out. A simulation tool was used for the study, and one of the buildings was monitored to verify the simulation work. Those factors that affect the development of the buildings in relation to thermo-energy consumption have been detailed. The large-scale heat gains resulting from the common glazing used by the tertiary sector in the Dominican Republic (including office buildings, hospitals and shops among others) illustrate the need for economically viable solutions in this sector. As a conclusion, it has been proved that the incidental thermal load of buildings could be reduced by up to 40%, thus in turn reducing the costs associated with the electricity needed to maintain the users’ desired thermal comfort level, as their influence in this sector is significant.
ISSN:1996-1073