Diverse activities and biochemical properties of amylase and proteases from six freshwater fish species

Abstract This study investigated the biochemical properties, enzyme activities, isoenzyme pattern, and molecular weight of three types of digestive enzyme from six freshwater fish species: Puntius gonionotus (common silver barb), Puntioplites proctozysron (Smith’s barb), Oreochromis niloticus (Nile...

Full description

Bibliographic Details
Main Authors: Chamaiporn Champasri, Suthathip Phetlum, Chanakan Pornchoo
Format: Article
Language:English
Published: Nature Publishing Group 2021-03-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-021-85258-7
Description
Summary:Abstract This study investigated the biochemical properties, enzyme activities, isoenzyme pattern, and molecular weight of three types of digestive enzyme from six freshwater fish species: Puntius gonionotus (common silver barb), Puntioplites proctozysron (Smith’s barb), Oreochromis niloticus (Nile tilapia), Hemibagrus spilopterus (yellow mystus), Ompok bimaculatus (butter catfish), and Kryptopterus geminus (sheatfish). The optimum pHs for amylase and alkaline protease activities were 7.0–8.0 and 8.0–10.0, and the optimum temperatures were 45–60 °C and 50–55 °C, respectively. A pepsin-like enzyme was detected in all three carnivorous fishes (Ompok bimaculatus, Kryptopterus geminus, and Hemibagrus spilopterus) with optimum reaction pH of 2.0 for each and optimum reaction temperatures 50–55 °C. In optimum reaction conditions, the amylase and alkaline protease from Puntioplites proctozyron showed the highest activities. Lower activities of all enzymes were observed at temperature (29 °C) of Lam Nam Choen swamp than at the optimum reaction temperatures. The fish species contained one to three and five to eight isoforms of amylase and alkaline protease, respectively, with molecular weights from 19.5 to 175 kDa. Both the alkaline proteases and amylases were stable in wide pH and temperature ranges.
ISSN:2045-2322