On the Identities of Symmetry for the <inline-formula><graphic file="1687-1847-2009-273545-i1.gif"/></inline-formula>-Euler Polynomials of Higher Order
<p/> <p>The main purpose of this paper is to investigate several further interesting properties of symmetry for the multivariate <inline-formula><graphic file="1687-1847-2009-273545-i2.gif"/></inline-formula>-adic fermionic integral on <inline-formula>&l...
Main Authors: | Park KyoungHo, Hwang Kyung-won, Kim Taekyun |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2009-01-01
|
Series: | Advances in Difference Equations |
Online Access: | http://www.advancesindifferenceequations.com/content/2009/273545 |
Similar Items
-
Multiple Twisted <inline-formula> <graphic file="1687-1847-2008-738603-i1.gif"/></inline-formula>-Euler Numbers and Polynomials Associated with <inline-formula> <graphic file="1687-1847-2008-738603-i2.gif"/></inline-formula>-Adic <inline-formula> <graphic file="1687-1847-2008-738603-i3.gif"/></inline-formula>-Integrals
by: Jang Lee-Chae
Published: (2008-01-01) -
New Approach to <inline-formula><graphic file="1687-1847-2010-431436-i1.gif"/></inline-formula>-Euler Numbers and Polynomials
by: Jang Lee-Chae, et al.
Published: (2010-01-01) -
<inline-formula> <graphic file="1687-1847-2008-743295-i1.gif"/></inline-formula>-Bernoulli Numbers Associated with <inline-formula> <graphic file="1687-1847-2008-743295-i2.gif"/></inline-formula>-Stirling Numbers
by: Kim Taekyun
Published: (2008-01-01) -
A Note on the <inline-formula><graphic file="1687-1847-2009-956910-i1.gif"/></inline-formula>-Euler Measures
by: Hwang Kyung-Won, et al.
Published: (2009-01-01) -
A New Approach to <inline-formula><graphic file="1687-1847-2010-951764-i1.gif"/></inline-formula>-Bernoulli Numbers and <inline-formula><graphic file="1687-1847-2010-951764-i2.gif"/></inline-formula>-Bernoulli Polynomials Related to <inline-formula><graphic file="1687-1847-2010-951764-i3.gif"/></inline-formula>-Bernstein Polynomials
by: Açikgöz Mehmet, et al.
Published: (2010-01-01)