Quantum Correlations in Mixed-State Metrology
We analyze the effects of quantum correlations, such as entanglement and discord, on the efficiency of phase estimation by studying four quantum circuits that can be readily implemented using NMR techniques. These circuits define a standard strategy of repeated single-qubit measurements, a classical...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society
2011-12-01
|
Series: | Physical Review X |
Online Access: | http://doi.org/10.1103/PhysRevX.1.021022 |
id |
doaj-0c4ce142f8ea4b72a85c15cbcedb5081 |
---|---|
record_format |
Article |
spelling |
doaj-0c4ce142f8ea4b72a85c15cbcedb50812020-11-24T23:07:55ZengAmerican Physical SocietyPhysical Review X2160-33082011-12-011202102210.1103/PhysRevX.1.021022Quantum Correlations in Mixed-State MetrologyKavan ModiHugo CableMark WilliamsonVlatko VedralWe analyze the effects of quantum correlations, such as entanglement and discord, on the efficiency of phase estimation by studying four quantum circuits that can be readily implemented using NMR techniques. These circuits define a standard strategy of repeated single-qubit measurements, a classical strategy where only classical correlations are allowed, and two quantum strategies where nonclassical correlations are allowed. In addition to counting space (number of qubits) and time (number of gates) requirements, we introduce mixedness as a key constraint of the experiment. We compare the efficiency of the four strategies as a function of the mixedness parameter. We find that the quantum strategy gives sqrt[N] enhancement over the standard strategy for the same amount of mixedness. This result applies even for highly mixed states that have nonclassical correlations but no entanglement.http://doi.org/10.1103/PhysRevX.1.021022 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Kavan Modi Hugo Cable Mark Williamson Vlatko Vedral |
spellingShingle |
Kavan Modi Hugo Cable Mark Williamson Vlatko Vedral Quantum Correlations in Mixed-State Metrology Physical Review X |
author_facet |
Kavan Modi Hugo Cable Mark Williamson Vlatko Vedral |
author_sort |
Kavan Modi |
title |
Quantum Correlations in Mixed-State Metrology |
title_short |
Quantum Correlations in Mixed-State Metrology |
title_full |
Quantum Correlations in Mixed-State Metrology |
title_fullStr |
Quantum Correlations in Mixed-State Metrology |
title_full_unstemmed |
Quantum Correlations in Mixed-State Metrology |
title_sort |
quantum correlations in mixed-state metrology |
publisher |
American Physical Society |
series |
Physical Review X |
issn |
2160-3308 |
publishDate |
2011-12-01 |
description |
We analyze the effects of quantum correlations, such as entanglement and discord, on the efficiency of phase estimation by studying four quantum circuits that can be readily implemented using NMR techniques. These circuits define a standard strategy of repeated single-qubit measurements, a classical strategy where only classical correlations are allowed, and two quantum strategies where nonclassical correlations are allowed. In addition to counting space (number of qubits) and time (number of gates) requirements, we introduce mixedness as a key constraint of the experiment. We compare the efficiency of the four strategies as a function of the mixedness parameter. We find that the quantum strategy gives sqrt[N] enhancement over the standard strategy for the same amount of mixedness. This result applies even for highly mixed states that have nonclassical correlations but no entanglement. |
url |
http://doi.org/10.1103/PhysRevX.1.021022 |
work_keys_str_mv |
AT kavanmodi quantumcorrelationsinmixedstatemetrology AT hugocable quantumcorrelationsinmixedstatemetrology AT markwilliamson quantumcorrelationsinmixedstatemetrology AT vlatkovedral quantumcorrelationsinmixedstatemetrology |
_version_ |
1716361533177462784 |