Crack Prediction Based on Wavelet Correlation Analysis Least Squares Support Vector Machine for Stone Cultural Relics
Preventive protection of cultural relics is to make use of all the science and technology beneficial to the research and protection of archaeological heritage to predict the disease of cultural relics. The existing preventive cultural relics protection system has made some achievements in environmen...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2021-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2021/6638521 |
Summary: | Preventive protection of cultural relics is to make use of all the science and technology beneficial to the research and protection of archaeological heritage to predict the disease of cultural relics. The existing preventive cultural relics protection system has made some achievements in environmental monitoring, but the analysis and utilization of large data of cultural relics are still insufficient. In this paper, under the idea of multisource information fusion, a least squares support vector machine regression method based on multivariate time series wavelet correlation analysis is proposed to achieve accurate crack prediction of stone cultural relics. Firstly, the correlation of multivariate time series of stone cultural relics are quantitatively analyzed and the validity of characteristic variables of the crack is discriminated by wavelet correlation analysis; then, a least squares support vector machine prediction model is constructed based on the correlation obtained from the analysis; finally, the good performance of the method is verified by using the environmental monitoring data of the rock mass fracture in the North Qianfo Cliff of Dafo Temple in Binzhou City of Shaanxi Province. The experimental results show that the proposed method is more effective than the traditional backpropagation neural network, support vector machine, and relevance vector machine regression methods. This method is universal and easy to implement for multisource data prediction of nonmovable cultural relics diseases. It provides a scientific theoretical reference for the preventive protection of cultural relics. |
---|---|
ISSN: | 1024-123X 1563-5147 |