Effect of the Y element on the structural, electronic and magnetic properties of Heusler compounds Co2YIn (Y = V, Nb, and Ti): An ab initio study
We report the effect of varying the Y element on the structural, electronic and magnetic properties of Co2YIn (Y = V, Nb, Ti) Heusler compounds using Density Functional Theory (DFT). The effect of the lattice parameter and total number of valence electrons on spin polarization and the magnetic prope...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIP Publishing LLC
2021-01-01
|
Series: | AIP Advances |
Online Access: | http://dx.doi.org/10.1063/9.0000091 |
id |
doaj-0c4568d89f67401cbdc8e8c3ee31cf07 |
---|---|
record_format |
Article |
spelling |
doaj-0c4568d89f67401cbdc8e8c3ee31cf072021-02-02T21:32:44ZengAIP Publishing LLCAIP Advances2158-32262021-01-01111015107015107-610.1063/9.0000091Effect of the Y element on the structural, electronic and magnetic properties of Heusler compounds Co2YIn (Y = V, Nb, and Ti): An ab initio studyZipporah Muthui0Robinson Musembi1Julius Mwabora2Arti Kashyap3Department of Physical Sciences, Chuka University, P.O. Box 109, 60400 Chuka, KenyaDepartment of Physics, University of Nairobi, P.O. Box 30197, 00100 Nairobi, KenyaDepartment of Physics, University of Nairobi, P.O. Box 30197, 00100 Nairobi, KenyaSchool of Basic Sciences, Indian Institute of Technology, Mandi, Himachal Pradesh 175005, IndiaWe report the effect of varying the Y element on the structural, electronic and magnetic properties of Co2YIn (Y = V, Nb, Ti) Heusler compounds using Density Functional Theory (DFT). The effect of the lattice parameter and total number of valence electrons on spin polarization and the magnetic properties of these Heusler compounds is compared. Co2VIn and Co2NbIn have the same number of valence electrons as Nb and V are from the same group in the periodic table. Co2VIn has almost the same lattice constant as Co2TiIn but they differ in the total number of valence electrons by one, as Ti and V are next neighbors in the same period of the periodic table. The optimized lattice parameters for Co2NbIn and Co2TiIn are found to be 6.20 Å and 6.05 Å respectively, while that of Co2VIn has been reported to be 6.00 Å. Co2NbIn is half metallic with an energy band gap of 0.1 eV in the minority states and has total magnetic moments of 2.02 µB/f.u. very close to the 2.00 µB/f.u. predicted by the Slater-Pauling rule, while Co2TiIn is not half metallic but has a highly spin polarized electronic structure having a spin polarization of 89.59% and total magnetic moments of 1.04µB/f.u. While reducing the number of the valence electrons by one in Co2TiIn has a significant effect on the magnetic moments and spin polarization, an increase in the lattice parameter while maintaining the same number of valence electrons in Co2NbIn does not result in the destruction of the half metallic gap.http://dx.doi.org/10.1063/9.0000091 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Zipporah Muthui Robinson Musembi Julius Mwabora Arti Kashyap |
spellingShingle |
Zipporah Muthui Robinson Musembi Julius Mwabora Arti Kashyap Effect of the Y element on the structural, electronic and magnetic properties of Heusler compounds Co2YIn (Y = V, Nb, and Ti): An ab initio study AIP Advances |
author_facet |
Zipporah Muthui Robinson Musembi Julius Mwabora Arti Kashyap |
author_sort |
Zipporah Muthui |
title |
Effect of the Y element on the structural, electronic and magnetic properties of Heusler compounds Co2YIn (Y = V, Nb, and Ti): An ab initio study |
title_short |
Effect of the Y element on the structural, electronic and magnetic properties of Heusler compounds Co2YIn (Y = V, Nb, and Ti): An ab initio study |
title_full |
Effect of the Y element on the structural, electronic and magnetic properties of Heusler compounds Co2YIn (Y = V, Nb, and Ti): An ab initio study |
title_fullStr |
Effect of the Y element on the structural, electronic and magnetic properties of Heusler compounds Co2YIn (Y = V, Nb, and Ti): An ab initio study |
title_full_unstemmed |
Effect of the Y element on the structural, electronic and magnetic properties of Heusler compounds Co2YIn (Y = V, Nb, and Ti): An ab initio study |
title_sort |
effect of the y element on the structural, electronic and magnetic properties of heusler compounds co2yin (y = v, nb, and ti): an ab initio study |
publisher |
AIP Publishing LLC |
series |
AIP Advances |
issn |
2158-3226 |
publishDate |
2021-01-01 |
description |
We report the effect of varying the Y element on the structural, electronic and magnetic properties of Co2YIn (Y = V, Nb, Ti) Heusler compounds using Density Functional Theory (DFT). The effect of the lattice parameter and total number of valence electrons on spin polarization and the magnetic properties of these Heusler compounds is compared. Co2VIn and Co2NbIn have the same number of valence electrons as Nb and V are from the same group in the periodic table. Co2VIn has almost the same lattice constant as Co2TiIn but they differ in the total number of valence electrons by one, as Ti and V are next neighbors in the same period of the periodic table. The optimized lattice parameters for Co2NbIn and Co2TiIn are found to be 6.20 Å and 6.05 Å respectively, while that of Co2VIn has been reported to be 6.00 Å. Co2NbIn is half metallic with an energy band gap of 0.1 eV in the minority states and has total magnetic moments of 2.02 µB/f.u. very close to the 2.00 µB/f.u. predicted by the Slater-Pauling rule, while Co2TiIn is not half metallic but has a highly spin polarized electronic structure having a spin polarization of 89.59% and total magnetic moments of 1.04µB/f.u. While reducing the number of the valence electrons by one in Co2TiIn has a significant effect on the magnetic moments and spin polarization, an increase in the lattice parameter while maintaining the same number of valence electrons in Co2NbIn does not result in the destruction of the half metallic gap. |
url |
http://dx.doi.org/10.1063/9.0000091 |
work_keys_str_mv |
AT zipporahmuthui effectoftheyelementonthestructuralelectronicandmagneticpropertiesofheuslercompoundsco2yinyvnbandtianabinitiostudy AT robinsonmusembi effectoftheyelementonthestructuralelectronicandmagneticpropertiesofheuslercompoundsco2yinyvnbandtianabinitiostudy AT juliusmwabora effectoftheyelementonthestructuralelectronicandmagneticpropertiesofheuslercompoundsco2yinyvnbandtianabinitiostudy AT artikashyap effectoftheyelementonthestructuralelectronicandmagneticpropertiesofheuslercompoundsco2yinyvnbandtianabinitiostudy |
_version_ |
1724291353534267392 |