Large-scale atomistic simulations of nanostructured materials based on divide-and-conquer density functional theory
A linear-scaling algorithm based on a divide-and-conquer (DC) scheme is designed to perform large-scale molecular-dynamics simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory (DFT). This scheme is applied to the thermite reacti...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2011-05-01
|
Series: | EPJ Web of Conferences |
Online Access: | http://dx.doi.org/10.1051/epjconf/20111503005 |
Summary: | A linear-scaling algorithm based on a divide-and-conquer (DC) scheme is designed to perform large-scale molecular-dynamics simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory (DFT). This scheme is applied to the thermite reaction at an Al/Fe2O3 interface. It is found that mass diffusion and reaction rate at the interface are enhanced by a concerted metal-oxygen flip mechanism. Preliminary simulations are carried out for an aluminum particle in water based on the conventional DFT, as a target system for large-scale DC-DFT simulations. A pair of Lewis acid and base sites on the aluminum surface preferentially catalyzes hydrogen production in a low activation-barrier mechanism found in the simulations |
---|---|
ISSN: | 2100-014X |