Decoding Performance Analysis of GNSS Messages with Land Mobile Satellite Channel in Urban Environment

Demand for Global Navigation Satellite System (GNSS) applications in the urban environment has experienced a remarkable growth in recent years. However, the received signals are subjected to various urban channel impairments, like shadowing and multipath fading. Therefore, the decoding performance i...

Full description

Bibliographic Details
Main Authors: Jing Ke, Xiaochun Lu, Xue Wang, Xiaofei Chen, Sheng Tang
Format: Article
Language:English
Published: MDPI AG 2018-10-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/7/11/273
Description
Summary:Demand for Global Navigation Satellite System (GNSS) applications in the urban environment has experienced a remarkable growth in recent years. However, the received signals are subjected to various urban channel impairments, like shadowing and multipath fading. Therefore, the decoding performance is different from that in open-sky conditions. In this paper, a two-state Land Mobile Satellite (LMS) channel based on the Markov process is used to model the urban channel properties, and then, the analysis of decoding performance in terms of frame error rate (FER) in the LMS channel is performed by evaluating the effect of three major influencing factors, specifically, coding and interleaving in the GNSS message, terminal speed, and satellite elevation angle. Extensive simulations are conducted on BDS-3 B1C B-CNAV1 message and GALILEO E5a F/NAV message. The results validate the excellent error correcting performance of the nonbinary low density parity check (NB-LDPC) code of the B-CNAV1 message and the effectiveness of interleaving in both of the messages in urban condition. Furthermore, it also shows that decoding performance improvement can be achieved with higher terminal speed and higher elevation angle in urban scenarios.
ISSN:2079-9292