Semi-empirical prediction of dam height and stability of dams formed by rock slope failures in Norway

<p>Based on an inventory of 69 dams formed by rock slope failures in southwestern Norway and published inventories from other parts of the world, we developed semi-empirical relationships linking the maximum dam height (<span class="inline-formula"><i>H</i><sub&g...

Full description

Bibliographic Details
Main Authors: T. Oppikofer, R. L. Hermanns, V. U. Jakobsen, M. Böhme, P. Nicolet, I. Penna
Format: Article
Language:English
Published: Copernicus Publications 2020-11-01
Series:Natural Hazards and Earth System Sciences
Online Access:https://nhess.copernicus.org/articles/20/3179/2020/nhess-20-3179-2020.pdf
Description
Summary:<p>Based on an inventory of 69 dams formed by rock slope failures in southwestern Norway and published inventories from other parts of the world, we developed semi-empirical relationships linking the maximum dam height (<span class="inline-formula"><i>H</i><sub>D.max</sub></span> in metres) to dam volume (<span class="inline-formula"><i>V</i><sub>D</sub></span> in 10<span class="inline-formula"><sup>6</sup></span>&thinsp;m<span class="inline-formula"><sup>3</sup></span>) and other relevant parameters such as valley width (<span class="inline-formula"><i>W</i><sub>V</sub></span> in metres) or dam area (<span class="inline-formula"><i>A</i><sub>D</sub></span> in square kilometres). Power laws are obtained for <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>H</mi><mrow><mi mathvariant="normal">D</mi><mo>.</mo><mi mathvariant="normal">max</mi></mrow></msub><mo>=</mo><mi>f</mi><mo>(</mo><msub><mi>V</mi><mi mathvariant="normal">D</mi></msub><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="69pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="4515f2630a1b6c771e13ab38453ac7bc"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="nhess-20-3179-2020-ie00001.svg" width="69pt" height="13pt" src="nhess-20-3179-2020-ie00001.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>H</mi><mrow><mi mathvariant="normal">D</mi><mo>.</mo><mi mathvariant="normal">max</mi></mrow></msub><mo>=</mo><mi>f</mi><mo>(</mo><msub><mi>V</mi><mi mathvariant="normal">D</mi></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="65pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="f63784b1baf5306a548c3ae626ef30ec"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="nhess-20-3179-2020-ie00002.svg" width="65pt" height="13pt" src="nhess-20-3179-2020-ie00002.png"/></svg:svg></span></span>, <span class="inline-formula"><i>W</i><sub>V</sub>)</span>, while a linear relationship links <span class="inline-formula"><i>H</i><sub>D.max</sub></span> to the ratio <span class="inline-formula"><i>V</i><sub>D</sub>∕<i>A</i><sub>D</sub></span>. For dams in southwestern Norway, the linear relationship <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>H</mi><mrow><mi mathvariant="normal">D</mi><mo>.</mo><mi mathvariant="normal">max</mi></mrow></msub><mo>=</mo><mn mathvariant="normal">1.75</mn><mo>×</mo><msub><mi>V</mi><mi mathvariant="normal">D</mi></msub><mo>/</mo><msub><mi>A</mi><mi mathvariant="normal">D</mi></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="108pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="419603486f79d393d2b973adc87aeb23"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="nhess-20-3179-2020-ie00003.svg" width="108pt" height="14pt" src="nhess-20-3179-2020-ie00003.png"/></svg:svg></span></span> has the least uncertainties and provides the best results when comparing predicted dam heights with a validation dataset composed of existing dams in northern Norway and numerically modelled dams for possible rock slope failures. To assess the stability of future dams, we use the predicted dam heights in the dimensionless blockage index (DBI) and relating this index to the probability of dam failure derived from our dataset and other published databases on landslide dams. This study underlines the potential of semi-empirical relationships for assessing dam height and stability that needs to be included in preliminary hazard and risk assessment for unstable rock slopes, because damming of a river is an important secondary effect of landslides due to upstream flooding and possible outburst floods in the case of dam failure.</p>
ISSN:1561-8633
1684-9981