Antioxidant Treatment and Induction of Autophagy Cooperate to Reduce Desmin Aggregation in a Cellular Model of Desminopathy.

Desminopathies, a subgroup of myofibrillar myopathies (MFMs), the progressive muscular diseases characterized by the accumulation of granulofilamentous desmin-positive aggregates, result from mutations in the desmin gene (DES), encoding a muscle-specific intermediate filament. Desminopathies often l...

Full description

Bibliographic Details
Main Authors: Eva Cabet, Sabrina Batonnet-Pichon, Florence Delort, Blandine Gausserès, Patrick Vicart, Alain Lilienbaum
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2015-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4557996?pdf=render
Description
Summary:Desminopathies, a subgroup of myofibrillar myopathies (MFMs), the progressive muscular diseases characterized by the accumulation of granulofilamentous desmin-positive aggregates, result from mutations in the desmin gene (DES), encoding a muscle-specific intermediate filament. Desminopathies often lead to severe disability and premature death from cardiac and/or respiratory failure; no specific treatment is currently available. To identify drug-targetable pathophysiological pathways, we performed pharmacological studies in C2C12 myoblastic cells expressing mutant DES. We found that inhibition of the Rac1 pathway (a G protein signaling pathway involved in diverse cellular processes), antioxidant treatment, and stimulation of macroautophagy reduced protein aggregation by up to 75% in this model. Further, a combination of two or three of these treatments was more effective than any of them alone. These results pave the way towards the development of the first treatments for desminopathies and are potentially applicable to other muscle or brain diseases associated with abnormal protein aggregation.
ISSN:1932-6203